Câu hỏi:

20/08/2025 55 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến như sau:

Cho hàm số y = f(x) có bảng biến như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A. \(\left( {1;5} \right)\).

B. \(\left( {3; + \infty } \right)\).

C.\(\left( { - 1;3} \right)\).

D. \(\left( {0;4} \right)\). 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(y' > 0\,\forall x \in \left( {3; + \infty } \right)\)nên hàm số đã cho đồng biến trên khoảng \(\left( {3; + \infty } \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\mathop {{\rm{max}}}\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( 0 \right)\).

B. \(\mathop {{\rm{max}}}\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( 3 \right)\).

C. \(\mathop {{\rm{max}}}\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( 2 \right)\).

D. \(\mathop {{\rm{max}}}\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 1} \right)\) . 

Lời giải

Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) ta thấy \(\mathop {{\rm{max}}}\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( 0 \right) = 5\). Chọn A.

Câu 2

A. \(M\left( {1;\,2} \right)\).

B. \(Q\left( {1;\, - 3} \right)\).

C. \(N\left( {3;\,1} \right)\).

D. \(P\left( {2;\,2} \right)\).

Lời giải

Ta có \(y = \frac{{{x^2} - 2x + 4}}{{x - 3}} = x + 1 + \frac{7}{{x - 3}}\).

Phương trình đường tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).

Đường thẳng \(y = x + 1\) đi qua điểm \(M\left( {1;\,2} \right)\). Chọn A. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP