PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc và có độ lớn lần lượt là \(25\)N và \(12\) N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(4\)N. Tính độ lớn của hợp lực của ba lực trên (làm tròn kết quả đến hàng phần chục theo đơn vị Newton).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc và có độ lớn lần lượt là \(25\)N và \(12\) N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(4\)N. Tính độ lớn của hợp lực của ba lực trên (làm tròn kết quả đến hàng phần chục theo đơn vị Newton).
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) là ba lực tác động vào vật tại điểm \(O\) lần lượt có độ lớn \(25\,{\rm{N}},12\,{\rm{N}},4\,{\rm{N}}\).
Vẽ \[\overrightarrow {OA} = \overrightarrow {{F_1}} ,\,\overrightarrow {OB} = \overrightarrow {{F_2}} ,\,\overrightarrow {OC} = \overrightarrow {{F_3}} \], dựng hình bình hành \(OADB\) và \(ODEC\).
Khi đó hợp lực tác động vào vật là: \(\overrightarrow F = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Áp dụng định lý cô sin trong tam giác \(OBD,\) ta có:
\(O{D^2} = O{B^2} + B{D^2} - 2OB \cdot BD\cos \,\widehat {OBD} = {12^2} + {25^2} - 2 \cdot 12 \cdot 25 \cdot \cos 80^\circ = 769 - 600 \cdot \cos 80^\circ \).
Vì \(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật. Do đó tam giác \(ODE\) vuông tại \(D\).
Ta có \(OE = \sqrt {O{D^2} + E{D^2}} \approx 26,1\) (N).
Đáp án: 26,1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[A\] là biến cố: “thí nghiệm thứ nhất thành công”.
Gọi \(C\) là biến cố: “thí nghiệm thứ hai thành công”.
Gọi \(D\) là biến cố: “phòng thí nghiệm \(B\) thành công”.
Cách 1: Vì \(A,C\) là hai biến cố độc lập và phòng thành công ít nhất một thí nghiệm được coi là hoàn thành nhiệm vụ nên ta có: \(D = \left( {AC} \right) \cup \left( {A\overline C } \right) \cup \left( {\overline A C} \right)\). Do các biến cố \(AC;\,A\overline C ;\,\overline A C\) xung khắc nên áp dụng công thức cộng xác suất, ta có: \(P\left( D \right) = P\left( {AC} \right) + P\left( {A\overline C } \right) + P\left( {\overline A C} \right) = 0,7 \cdot 0,7 + 0,7 \cdot 0,3 + 0,3 \cdot 0,7 = 0,91\).
Cách 2: \(P\left( {\overline D } \right) = P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = \left( {1 - 0,7} \right) \cdot \left( {1 - 0,7} \right) = 0,09\).
Vậy \(P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - 0,09 = 0,91\).
Đáp án: \(0,91\).
Lời giải
Do \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên \(x = 1\) là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } y = 2;\mathop {\lim }\limits_{x \to - \infty } y = - 3\) nên \(y = 2,y = - 3\) là hai đường tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có tất cả \(3\) đường tiệm cận đứng và đường tiệm cận ngang. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Năng lượng giải toả \(E\) của một trận động đất tại tâm chấn ở \(M\) độ Richter được xác định bởi công thức \(\log \left( E \right) = 11,4 + 1,5M\). Vào năm \(2024\), thành phố \(X\) xảy ra một trận động đất \(7,4\) độ Richter và năng lượng giải toả tại tâm chấn của động đất đó gấp \(11\) lần trận động đất xảy ra ở thành phố \(Y\) vào năm \(2023\). Hỏi khi đó, độ lớn của trận động đất tại thành phố \(Y\) là bao nhiêu độ Richter? (kết quả làm tròn đến hàng phần chục).
Năng lượng giải toả \(E\) của một trận động đất tại tâm chấn ở \(M\) độ Richter được xác định bởi công thức \(\log \left( E \right) = 11,4 + 1,5M\). Vào năm \(2024\), thành phố \(X\) xảy ra một trận động đất \(7,4\) độ Richter và năng lượng giải toả tại tâm chấn của động đất đó gấp \(11\) lần trận động đất xảy ra ở thành phố \(Y\) vào năm \(2023\). Hỏi khi đó, độ lớn của trận động đất tại thành phố \(Y\) là bao nhiêu độ Richter? (kết quả làm tròn đến hàng phần chục).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.