Câu hỏi:

20/08/2025 87 Lưu

Năng lượng giải toả \(E\) của một trận động đất tại tâm chấn ở \(M\) độ Richter được xác định bởi công thức \(\log \left( E \right) = 11,4 + 1,5M\). Vào năm \(2024\), thành phố \(X\) xảy ra một trận động đất \(7,4\) độ Richter và năng lượng giải toả tại tâm chấn của động đất đó gấp \(11\) lần trận động đất xảy ra ở thành phố \(Y\) vào năm \(2023\). Hỏi khi đó, độ lớn của trận động đất tại thành phố \(Y\) là bao nhiêu độ Richter? (kết quả làm tròn đến hàng phần chục). 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({E_X};{E_Y}\) lần lượt là năng lượng giải toả của trận động đất xảy ra tại thành phố\(X;Y\). Gọi \({M_Y}\) độ Richter là độ lớn của trận động đất tại thành phố \(Y\).

Ta có \(\log \left( {{E_X}} \right) = 11,4 + 1,5 \cdot 7,4 = 22,5.\)

Suy ra \(\log \left( {{E_Y}} \right) = 11,4 + 1,5.{M_Y} \Leftrightarrow \log \left( {\frac{{{E_X}}}{{11}}} \right) = 11,4 + 1,5.{M_Y} \Leftrightarrow \log \left( {{E_X}} \right) - \log \left( {11} \right) = 11,4 + 1,5 \cdot {M_Y}\)

\( \Leftrightarrow {M_Y} = \frac{{22,5 - \log \left( {11} \right) - 11,4}}{{1,5}} \approx 6,7\) độ Richter.

Đáp án: \(6,7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\,\,\left( {0 < x \le 14} \right)\) là số máy in cần sử dụng để in lô hàng.

Chi phí cài đặt là \(12x\).

Số giờ in hết số ấn phẩm là \(\frac{{4000}}{{30x}}\) (giờ), chi phí giám sát là \(\frac{{4000}}{{30x}} \cdot 9 = \frac{{1200}}{x}\) (USD).

Tổng chi phí in là \(P\left( x \right) = 12x + \frac{{1200}}{x}\) .

\(P'\left( x \right) = 12 - \frac{{1200}}{{{x^2}}}\)

\(P'\left( x \right) = 0 \Leftrightarrow {x^2} = 100 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = - 10\,\,\left( L \right)\end{array} \right.\).

Bảng biến thiên:

A diagram of a mathematical equation

AI-generated content may be incorrect.

Vậy để chi phí in nhỏ nhất thì số máy phải sử dụng là \(10\) máy.

Đáp án: \(10\).

Lời giải

Ta có \(\overrightarrow {BC'} \cdot \overrightarrow {B'A} = \overrightarrow {AD'} \cdot \overrightarrow {B'A} = - \overrightarrow {AD'} .\overrightarrow {AB'} = - a\sqrt 2 \cdot a\sqrt 2 \cdot \cos \left( {\overrightarrow {AD'} ,\overrightarrow {AB'} } \right) = - {a^2}\). Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP