Câu hỏi:

12/08/2025 7 Lưu

Cho hai mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0,\left( {{P_2}} \right):2x + 2y + z + 8 = 0\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\).

a) Vectơ \({\vec n_1} = (2; - 3; - 6)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chọn đúng

Ta có: \({\vec n_1} = (2; - 3; - 6)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\), \({\vec n_2} = (2;2;1)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).

\(\cos \alpha  = \frac{{\left| {{{\vec n}_1} \cdot {{\vec n}_2}} \right|}}{{\left| {{{\vec n}_1}} \right| \cdot \left| {{{\vec n}_2}} \right|}} = \frac{{|2 \cdot 2 + ( - 3) \cdot 2 + ( - 6) \cdot 1|}}{{\sqrt {{2^2} + {{( - 3)}^2} + {{( - 6)}^2}}  \cdot \sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{8}{{21}}.\) Suy ra α68°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chọn đúng

AOyA0;2;0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP