Một hộp kín đựng \[30\] tấm thẻ giống hệt nhau đánh số từ \(1\) đến \(30\). Một người rút ngẫu nhiên ra một tấm thẻ từ trong hộp. Người đó được thông báo rằng thẻ rút ra mang số chẵn. Tính xác suất để người đó rút được thẻ có số chia hết cho \(10\).
Quảng cáo
Trả lời:

Chọn B
Gọi A là biến cố “Rút được thẻ có số chia hết cho \(10\)”, B là biến cố: “Rút được thẻ mang số chẵn”.
Khi đó, biến cố AB: “Rút được thẻ chẵn mang số chia hết cho \(10\)”. Suy ra:
\(n\left( {AB} \right) = 3\)\( \Rightarrow P\left( {AB} \right) = \frac{3}{{30}} = \frac{1}{{10}}\)
Có \(15\) số chẵn từ \(1\) đến \(30\)nên \(n\left( B \right) = 15\)\( \Rightarrow P\left( B \right) = \frac{{15}}{{30}} = \frac{1}{2}\)
Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{5}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Gọi:
- G là biến cố "Ngày có gió"
- M là biến cố "Ngày có mưa"
Theo đề bài, nếu ngày có gió thì xác suất có mưa là \[0,4\] nên \[P(M|G) = 0,4\].
Suy ra: \[P(M|\overline G ) = 1 - 0,4 = 0,6\].
Ngày không có gió thì xác suất có mưa là \[0,2\]nên \[P(M|\overline G ) = 0,2\].
Suy ra: \[P(\overline M |\overline G ) = 1 - 0,2 = 0,8\].
\[P(GM) = P(G){\rm{ }}.P(M|G) = 0,6{\rm{ }}.{\rm{ }}0,4{\rm{ }} = 0,24.\]
\[P(G\overline M ){\rm{ }} = P(G){\rm{ }}.P(\overline M |G) = 0,6.0,6 = 0,36.\]
Điều này có nghĩa là tại địa phương T, trong một ngày, xác suất để trời vừa có gió và vừa có mưa là \[0,24\]; xác suất để trời có gió nhưng không có mưa là \[0,36\].
Lời giải
Chọn C
Gọi A là biến cố nắp khoen đầu trúng thưởng.
B là biến cố nắp khoen thứ hai trúng thưởng.
C là biến cố cả 2 nắp đều trúng thưởng.
Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng. Suy ra \[{\rm{P}}\left( {\rm{A}} \right) = {\rm{ }}\frac{2}{{20}}\]
Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng.
Do đó: \[{\rm{P}}\left( {{\rm{B}}/{\rm{A}}} \right) = {\rm{ }}\frac{1}{{19}}\]
Từ đó ta có: P(C) = P(A). P(B/A) = \[\frac{2}{{20}} \cdot \frac{1}{{19}} = {\rm{ }}\frac{1}{{190}} \approx {\rm{ }}0,00{\rm{53}}\]
Vậy xác suất để cả hai nắp đều trúng thưởng là 0,0053.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.