Câu hỏi:

11/09/2025 40 Lưu

Cho hàm số \(y = f\left( x \right)\) có đồ thị trên đoạn \(\left[ { - 2;3} \right]\) là đường cong trong hình vẽ.

Cho hàm số   có đồ thị trên đoạn  là đường cong trong hình vẽ. Gọi  lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số  trên đoạn . Tính . (ảnh 1)

Gọi \(a,b\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;3} \right]\). Tính \(S = 2{\rm{a}} + 3b\).

A. S=2

B. S=-3

C. S=1.

D. S=-1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị ta có \(a = 4;b = - 3 \Rightarrow S = 2{\rm{a}} + 3b = - 1\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.

Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Câu 6

A. \[ - \frac{1}{2}\].               

B. \[\frac{1}{2}\].              
C. \[\frac{{\sqrt 3 }}{2}\].          
D. \[ - \frac{{\sqrt 3 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP