Câu hỏi:

11/09/2025 39 Lưu

Cho hàm số \[y = \frac{{2x - 1}}{{x - 2}}\]. Phương trình đường tiệm cận đứng của đồ thị hàm số là

A. \(x = \frac{1}{2}\). 
B. \(y = 2\).     
C. \(y = \frac{1}{2}\). 
D. \(x = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.

Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Câu 6

A. \[ - \frac{1}{2}\].               

B. \[\frac{1}{2}\].              
C. \[\frac{{\sqrt 3 }}{2}\].          
D. \[ - \frac{{\sqrt 3 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP