Câu hỏi:

11/09/2025 55 Lưu

Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình vẽ dưới.

Cho hàm số  xác định trên  và có đồ thị là đường cong trong hình vẽ dưới. Số nghiệm của phương trình  là (ảnh 3)

Số nghiệm của phương trình \(f\left( x \right) = 0\)

A. 4

B. 3

C. 2

D. 5

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số nghiệm của phương trình \(f\left( x \right) = 0\) là số giao điểm của đồ thị hàm số với trục hoành.

Trên hình vẽ, đồ thị hàm số cắt trục hoành tại 5 điểm nên phương trình \(f\left( x \right) = 0\) có 5 nghiệm. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.

Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Câu 6

A. \[ - \frac{1}{2}\].               

B. \[\frac{1}{2}\].              
C. \[\frac{{\sqrt 3 }}{2}\].          
D. \[ - \frac{{\sqrt 3 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP