Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA} = \vec a\), \(\overrightarrow {CB} = \vec b\), \(\overrightarrow {AA'} = \vec c\). Biết \(\overrightarrow {AM} = m\vec a + n\vec b + p\vec c\). Tính \(26m + 3n - 4p\).
Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA} = \vec a\), \(\overrightarrow {CB} = \vec b\), \(\overrightarrow {AA'} = \vec c\). Biết \(\overrightarrow {AM} = m\vec a + n\vec b + p\vec c\). Tính \(26m + 3n - 4p\).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {CB} - \overrightarrow {CA} + \frac{1}{2}\overrightarrow {BB'} \)\( = \vec b - \vec a + \frac{1}{2}\overrightarrow {AA'} = - \vec a + \vec b + \frac{1}{2}\vec c\).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}m = - 1\\n = 1\end{array}\\{p = \frac{1}{2}\,\,}\end{array}} \right.\) . Vậy \(26m + 3n - 4p = 26 \cdot \left( { - 1} \right) + 3 \cdot 1 - 4 \cdot \frac{1}{2} = - 25\).
Đáp án: \( - 25\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.
Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.
Lời giải
Vì \(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).
Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).
Suy ra \(A'\left( {2; - 3} \right)\).
Vì \(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).
Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).
Đáp án: \( - 0,6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[ - \frac{1}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

