Câu hỏi:

11/09/2025 27 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên được cho dưới đây.

Cho hàm số  có bảng biến thiên được cho dưới đây.Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số  là (ảnh 2)

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

A. 2

B. 3
C. 0
D. 1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đồ thị hàm số đã cho có 1 tiệm cận đứng \(x = - 3\) và 1 tiệm cận ngang \(y = 2\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).

Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)

\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)

\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).

Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].

Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)

Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].

Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).

Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Lời giải

Gọi \(x\,\left( {{\rm{cm}}} \right)\) là cạnh đáy của chiếc thùng \(\,\left( {x > 0} \right)\).

Khi đó diện tích đáy thùng là \(x{\,^2}\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vì thể tích thùng là \(2000\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên chiều cao hộp là \(h = \frac{{2000}}{{{x^2}}}\,\,\left( {{\rm{cm}}} \right)\).

Tổng diện tích các bề mặt của chiếc thùng là: \(S = 2{x^2} + 4xh = \,\,2{x^2} + \frac{{8000}}{x}\,\,\,\left( {x > 0} \right)\).

Ta có \(S' = 4x - \frac{{8000}}{{{x^2}}}\,\, = \frac{{4{x^3} - 8000}}{{{x^2}}};\,\,\,S'\, = 0 \Leftrightarrow x = 10\sqrt[3]{2}\).

Bằng cách bảng biến thiên, dễ thấy diện tích bề mặt thùng nhỏ nhất khi cạnh đáy của thùng là \(10\sqrt[3]{2}\) và chiều cao của thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\).

Vậy nguyên liệu để sản xuất chiếc thùng là ít nhất khi chiều cao thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\,\,{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP