Câu hỏi:

11/09/2025 26 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(O,O'\) lần lượt là tâm của hình vuông \(ABCD\)\(A'B'C'D'\). Độ dài vec tơ \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \) bằng

A. 4a

B. 6a
C. 2a

D. a

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A screen shot of a game

AI-generated content may be incorrect.

Ta có \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \).

Suy ra \(\left| {\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).

Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)

\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)

\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).

Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].

Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)

Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].

Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).

Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Lời giải

Gọi \(x\,\left( {{\rm{cm}}} \right)\) là cạnh đáy của chiếc thùng \(\,\left( {x > 0} \right)\).

Khi đó diện tích đáy thùng là \(x{\,^2}\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vì thể tích thùng là \(2000\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên chiều cao hộp là \(h = \frac{{2000}}{{{x^2}}}\,\,\left( {{\rm{cm}}} \right)\).

Tổng diện tích các bề mặt của chiếc thùng là: \(S = 2{x^2} + 4xh = \,\,2{x^2} + \frac{{8000}}{x}\,\,\,\left( {x > 0} \right)\).

Ta có \(S' = 4x - \frac{{8000}}{{{x^2}}}\,\, = \frac{{4{x^3} - 8000}}{{{x^2}}};\,\,\,S'\, = 0 \Leftrightarrow x = 10\sqrt[3]{2}\).

Bằng cách bảng biến thiên, dễ thấy diện tích bề mặt thùng nhỏ nhất khi cạnh đáy của thùng là \(10\sqrt[3]{2}\) và chiều cao của thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\).

Vậy nguyên liệu để sản xuất chiếc thùng là ít nhất khi chiều cao thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\,\,{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP