Câu hỏi:

23/08/2025 13 Lưu

Từ một hộp có 100 quả cầu trắng và 50 quả cầu đen. Người ta rút ngẫu nhiên không hoàn lại từng quả một và rút hai lần. Các mệnh đề sau đúng hay sai ?

b) Số kết quả thuận lợi của biến cố lần 2 thứ rút được quả cầu trắng biết lần thứ nhất không rút được quả cầu trắng là \(100\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Lần thứ nhất rút cầu đen nên vẫn còn 100 quả cầu trắng trong hộp.

Do đó: số kết quả thuận lợi của biến cố lần 2 thứ rút được quả cầu trắng biết lần thứ nhất không rút được quả cầu trắng là \(100\).

Chọn đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\). Suy ra a sai.

Câu 2

Lời giải

a) Chọn đúng

Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)

Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)

Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).

Theo công thức xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP