Câu hỏi:

23/08/2025 86 Lưu

Thực hiện khảo sát tại một địa phương mà số trẻ em nam gấp \(1,5\) lần số trẻ em nữ, có \(8\% \) số trẻ em nam bị hen phế quản, \(5\% \) số trẻ em nữ bị hen phế quản. Chọn ngẫu nhiên 1 trẻ em. Giả sử trẻ em được chọn bị hen phế quản. Xác suất chọn được trẻ em nam là bao nhiêu (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố: \(A\): "Chọn được tré em nam";

                           \(B\): "Chọn được trẻ em nam bị hen phế quån".

Khi đó, \(P\left( A \right) = \frac{{1,5}}{{1 + 1,5}} = 0,6;\,\,\,P\left( {\overline A } \right) = 0,4;\,\,\,P\left( {B|A} \right) = 0,08;\,\,\,P\left( {B|\overline A } \right) = 0,05.\)

Theo công thức xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,6.0,08 + 0,4.0,05 = 0,068\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\): "Lấy được 1 chính phẩm từ thùng I sang thùng II";

   \(B\): "Lây được 1 chính phẩm từ thùng II".

Khi đó, \(P\left( A \right) = \frac{5}{9};\,\,P\left( {\overline A } \right) = \frac{4}{9};\,\,P\left( {B|A} \right) = \frac{7}{{15}};\,\,P\left( {B|\overline A } \right) = \frac{6}{{15}} = \frac{2}{5}\).

Theo công thức xác suất toàn phần, xác suất của biến cố \(B\) là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{9}.\frac{7}{{15}} + \frac{4}{9}.\frac{2}{5} \approx 0,44\).

Lời giải

Xét các biến cố:

A: "Chọn được người không bị bệnh tiểu đường";

\(B\) : "Chọn được người cao tuổi là nam";

\(\bar B\) : "Chọn được người cao tuổi là nữ".

Từ giả thiết, ta có: \({\rm{P}}(B) = \frac{{260}}{{500}} = 0,52;{\rm{P}}(A\mid B) = 1 - 0,4 = 0,6\);

\({\rm{P}}(\bar B) = \frac{{240}}{{500}} = 0,48;{\rm{P}}(A\mid \bar B) = 1 - 0,55 = 0,45.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,52 \cdot 0,6 + 0,48 \cdot 0,45 = 0,528.{\rm{ }}\)

Vậy xác suất để chọn được một người không bị bệnh tiểu đường là 0,528 .