Có 10 lọ hóa chất trong đó có 4 lọ loại I, 6 lọ loại II. Nếu dùng lọ loại I thì kết quả tốt với xác suất 0, 9 , nếu dùng lọ loại II thì kết quả tốt với xác suất 0, 5 . Xác suất để lọ hóa chất tốt này thuộc loại I bằng (làm tròn kết quả đến hàng phần nghìn).
Có 10 lọ hóa chất trong đó có 4 lọ loại I, 6 lọ loại II. Nếu dùng lọ loại I thì kết quả tốt với xác suất 0, 9 , nếu dùng lọ loại II thì kết quả tốt với xác suất 0, 5 . Xác suất để lọ hóa chất tốt này thuộc loại I bằng (làm tròn kết quả đến hàng phần nghìn).
Quảng cáo
Trả lời:

a) Gọi \({B_1}\) là biến cố: "Lấy được lọ hóa chất loại I", \({B_2}\) là biến cố: "Lấy được lọ hóa chất loại II", \(A\) là biến cố: "Lấy được lọ hóa chất có kết quả tốt". Ta thấy \(\left\{ {{B_1},{B_2}} \right\}\) là hệ đầy đủ các biến cố và
\(\begin{array}{l}\mathbb{P}\left( {{B_1}} \right) = \frac{4}{{10}},\mathbb{P}\left( {{B_2}} \right) = \frac{6}{{10}}\\\mathbb{P}\left( {A\mid {B_1}} \right) = 0,9,\mathbb{P}\left( {A\mid {B_2}} \right) = 0,5\end{array}\)\(\)
Theo công thức xác suất đầy đủ
\(\begin{array}{*{20}{l}}{\mathbb{P}(A)}&{ = \mathbb{P}\left( {{B_1}} \right)\mathbb{P}\left( {A\mid {B_1}} \right) + \mathbb{P}\left( {{B_2}} \right)\mathbb{P}\left( {A\mid {B_2}} \right)}\\{}&{ = \frac{4}{{10}} \times 0,9 + \frac{6}{{10}} \times 0,5}\\{}&{ = 0,66}\end{array}\)\(\)
Ta cần tính xác suất \(\mathbb{P}\left( {{B_1}\mid A} \right)\), theo công thức Bayes
\[\mathbb{P}\left( {{B_1}\mid A} \right) = \frac{{\mathbb{P}\left( {{B_1}} \right)\mathbb{P}\left( {A\mid {B_1}} \right)}}{{\mathbb{P}(A)}} = \frac{{\frac{4}{{10}} \times 0,9}}{{0,66}} = \frac{6}{{11}} \approx 0,545\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố: \(A\): "Lấy được 1 chính phẩm từ thùng I sang thùng II";
\(B\): "Lây được 1 chính phẩm từ thùng II".
Khi đó, \(P\left( A \right) = \frac{5}{9};\,\,P\left( {\overline A } \right) = \frac{4}{9};\,\,P\left( {B|A} \right) = \frac{7}{{15}};\,\,P\left( {B|\overline A } \right) = \frac{6}{{15}} = \frac{2}{5}\).
Theo công thức xác suất toàn phần, xác suất của biến cố \(B\) là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{9}.\frac{7}{{15}} + \frac{4}{9}.\frac{2}{5} \approx 0,44\).
Lời giải
Xét các biến cố:
A: "Chọn được người không bị bệnh tiểu đường";
\(B\) : "Chọn được người cao tuổi là nam";
\(\bar B\) : "Chọn được người cao tuổi là nữ".
Từ giả thiết, ta có: \({\rm{P}}(B) = \frac{{260}}{{500}} = 0,52;{\rm{P}}(A\mid B) = 1 - 0,4 = 0,6\);
\({\rm{P}}(\bar B) = \frac{{240}}{{500}} = 0,48;{\rm{P}}(A\mid \bar B) = 1 - 0,55 = 0,45.{\rm{ }}\)
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,52 \cdot 0,6 + 0,48 \cdot 0,45 = 0,528.{\rm{ }}\)
Vậy xác suất để chọn được một người không bị bệnh tiểu đường là 0,528 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.