Câu hỏi:

25/08/2025 9 Lưu

Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn \(OA,\,OB,\,OC\) đôi một vuông góc (như hình vẽ dưới đây). Biết lực căng dây tương ứng trên mỗi dây \(OA,\,OB,\,OC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) thỏa mãn \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 16\](N). Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục).

Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục). (ảnh 2)

Ta có: \[P = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right|\].

Vẽ hình vuông \(OAEB\), ta có \[\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OE} \]. (Quy tắc hình bình hành)

Vẽ hình chữ nhật \(OCFE\), ta có \[\overrightarrow {OC}  + \overrightarrow {OE}  = \overrightarrow {OF} \]. (Quy tắc hình bình hành)

Suy ra: \[P = \left| {\overrightarrow {OF} } \right| = OF\].

Xét hình vuông \(OAEB\), cạnh \(16\), có đường chéo \(OE = 16\sqrt 2 \).

Xét tam giác vuông \(OEF\), vuông tại \(E\), có \(OF = \sqrt {O{E^2} + E{F^2}}  = \sqrt {{{\left( {16\sqrt 2 } \right)}^2} + {{16}^2}}  = 16\sqrt 3  \approx 27,7\)

Vậy \(P \approx 27,7\)(N).

Trả lời: 27,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cả hai lực tạo với nhau một góc 80° là \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \), ta có \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 50N\).

Lực còn lại là \(\overrightarrow {{F_3}} \), ta có \(\left| {\overrightarrow {{F_3}} } \right| = 60N\).

Gọi \(\overrightarrow F \) là hợp lực của ba lực trên ta có:

\(\left| {\overrightarrow F } \right| = \sqrt {{{\left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right)}^2}} \)

\( = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2} + 2\left( {\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + \left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_3}} } \right|.\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_3}} } \right) + \left| {\overrightarrow {{F_3}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \left( {\overrightarrow {{F_3}} ,\overrightarrow {{F_2}} } \right)} \right)} \)

\( = \sqrt {{{50}^2} + {{50}^2} + {{60}^2} + 2\left( {50.50.\cos 80^\circ  + 50.60.\cos 60^\circ  + 60.50.\cos 60^\circ } \right)}  \approx 124\) N.

Trả lời: 124.

Câu 2

Lời giải

Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {C'D'} \) là hai vectơ cùng phương, cùng độ dài nhưng ngược hướng nên hai vectơ trên là hai vectơ đối nhau.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP