Câu hỏi:

26/08/2025 23 Lưu

Phân tích đa thức \(\frac{{{x^3}}}{{64}} + 8{y^3}\) thành nhân tử, ta được các nhân tử là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Ta có: \(\frac{{{x^3}}}{{64}} + 8{y^3} = {\left( {\frac{x}{4}} \right)^3} + {\left( {2y} \right)^3} = \left( {\frac{x}{4} + 2y} \right)\left[ {{{\left( {\frac{x}{4}} \right)}^2} - \frac{x}{4} \cdot 2y + {{\left( {2y} \right)}^2}} \right] = \left( {\frac{x}{4} + 2y} \right)\left( {\frac{{{x^2}}}{{16}} - \frac{{xy}}{2} + 4{y^2}} \right).\)

Do đó, phân tích đa thức \(\frac{{{x^3}}}{{64}} + 8{y^3}\) thành nhân tử \(x - y?\)ta được hai nhân tử là \(\frac{x}{4} + 2y\) và \(\frac{{{x^2}}}{{16}} - \frac{{xy}}{2} + 4{y^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Đáp án đúng là: B

Ta có: \(x\left( {x + 5} \right) - 8x = x\left( {x + 5 - 8} \right) = x\left( {x - 3} \right).\)

Câu 2

Lời giải

Lời giải

Đáp án đúng là: C

Ta có: abm+banb+a=abmabn+ab=abmn+1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP