PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN
Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m)
[8,4; 8,6)
[8,6; 8,8)
[8,8; 9,0)
[9,0; 9,2)
[9,2; 9,4)
Số cây
5
12
25
44
14
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên:
PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN
Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:
|
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
|
Số cây |
5 |
12 |
25 |
44 |
14 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên:
A. 0,286.
Quảng cáo
Trả lời:
Cỡ mẫu n = 100.
Gọi \({x_1};{x_2};...;{x_{100}}\) là chiều cao tương ứng của 100 cây keo.
Tứ phân vị thứ nhất là \(\frac{{{x_{25}} + {x_{26}}}}{2} \in {\rm{[8}}{\rm{,8;9}}{\rm{,0]}}\).
Do đó \({Q_1} = 8,8 + \frac{{\frac{{100}}{4} - (5 + 12)}}{{25}}(9,0 - 8,8) = 8,864\)
Tứ phân vị thứ ba là \(\frac{{{x_{75}} + {x_{76}}}}{2} \in {\rm{[9}}{\rm{,0;9}}{\rm{,2]}}\).
Do đó \({Q_3} = 9 + \frac{{3.\frac{{100}}{4} - (5 + 12 + 25)}}{{44}}(9,2 - 9,0) = 9,15\)
Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 9,15 - 8,864 = 0,286\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số lượng khách du lịch đến tỉnh Quảng Ninh được cho dưới bảng sau

Cỡ mẫu n = 3 + 9 + 3 + 2 = 17.
Gọi x1; x2; …; x17 là số khách đến Quảng Ninh du lịch được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_4} + {x_5}}}{2}\) Î [5; 9) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{17}}{4} - 3}}{9}.4 = \frac{{50}}{9}\).
Ta có \({Q_3} = \frac{{{x_{13}} + {x_{14}}}}{2}\) Î [9; 13) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 9 + \frac{{\frac{{3.17}}{4} - 12}}{3}.4 = 10\).
Khoảng tứ phân vị là DQ = 10 – \(\frac{{50}}{9}\) ≈ 4,44.
Trả lời: 4,44.
Lời giải
a) Khoảng biến thiên của tuổi thọ bóng đèn phân xưởng A là \(R = 39 - 24 = 15\).
b) Đối với mẫu số liệu phân xưởng A:
Cỡ mẫu n = 4 + 8 + 10 + 6 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng A được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 4}}{8} \cdot 3 = 28,3125,\)
\({Q_3} = 33 + \frac{{22,5 - 22}}{6} \cdot 3 = 33,25.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = 33,25 - 28,3125 = 4,9375\).
Đối với mẫu số liệu phân xưởng B:
Cỡ mẫu n = 5 + 7 + 9 + 7 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng B được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 5}}{7} \cdot 3 = \frac{{393}}{{14}},\) \({Q_3} = 33 + \frac{{22,5 - 21}}{7} \cdot 3 = \frac{{471}}{{14}}.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = \frac{{471}}{{14}} - \frac{{393}}{{14}} = \frac{{39}}{7}\).
c)
|
Giá trị đại diện |
\(25,5\) |
\(28,5\) |
\(31,5\) |
\(34,5\) |
\(37,5\) |
|
|
Số bóng đèn của phân xưởng A |
\(4\) |
\(8\) |
\(10\) |
\(6\) |
\(2\) |
\({n_A} = 30\) |
|
Số bóng đèn của phân xưởng B |
\(5\) |
\(7\) |
\(9\) |
\(7\) |
\(2\) |
\({n_B} = 30\) |
Số trung bình của phân xưởng A là \({\bar x_A} = \frac{{25,5 \cdot 4 + 28,5 \cdot 8 + 31,5 \cdot 10 + 34,5 \cdot 6 + 37,5 \cdot 2}}{{30}} = 30,9.\)
Số trung bình của phân xưởng B là \({\bar x_B} = \frac{{25,5 \cdot 5 + 28,5 \cdot 7 + 31,5 \cdot 9 + 34,5 \cdot 7 + 37,5 \cdot 2}}{{5 + 7 + 9 + 7 + 2}} = 30,9.\)
d) Phương sai của mẫu số liệu phân xưởng A là
\(s_A^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 4 + {{28,5}^2} \cdot 8 + {{31,5}^2} \cdot 10 + {{34,5}^2} \cdot 6 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 11,04.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng A là \({s_A} = \sqrt {11,04} \approx 3,32\).
Phương sai của mẫu số liệu phân xưởng B là
\(s_B^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 5 + {{28,5}^2} \cdot 7 + {{31,5}^2} \cdot 9 + {{34,5}^2} \cdot 7 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 12,24.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng B là \({s_B} = \sqrt {12,24} \approx 3,5\).
Vì \({s_A} < {s_B}\) nên tuổi thọ bóng đèn mẫu số liệu của phân xưởng A đồng đều hơn mẫu số liệu của phân xưởng B.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(0,812\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

