PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN
Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m)
[8,4; 8,6)
[8,6; 8,8)
[8,8; 9,0)
[9,0; 9,2)
[9,2; 9,4)
Số cây
5
12
25
44
14
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên:
PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN
Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
Số cây |
5 |
12 |
25 |
44 |
14 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên:
Quảng cáo
Trả lời:

Cỡ mẫu n = 100.
Gọi \({x_1};{x_2};...;{x_{100}}\) là chiều cao tương ứng của 100 cây keo.
Tứ phân vị thứ nhất là \(\frac{{{x_{25}} + {x_{26}}}}{2} \in {\rm{[8}}{\rm{,8;9}}{\rm{,0]}}\).
Do đó \({Q_1} = 8,8 + \frac{{\frac{{100}}{4} - (5 + 12)}}{{25}}(9,0 - 8,8) = 8,864\)
Tứ phân vị thứ ba là \(\frac{{{x_{75}} + {x_{76}}}}{2} \in {\rm{[9}}{\rm{,0;9}}{\rm{,2]}}\).
Do đó \({Q_3} = 9 + \frac{{3.\frac{{100}}{4} - (5 + 12 + 25)}}{{44}}(9,2 - 9,0) = 9,15\)
Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 9,15 - 8,864 = 0,286\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có bảng thống kê thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X
Thời gian (phút) |
\(\left[ {0;5} \right)\) |
\(\left[ {5;10} \right)\) |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
Giá trị đại diện |
\(2,5\) |
\(7,5\) |
\(12,5\) |
\(17,5\) |
Số bệnh nhân |
\(3\) |
\(12\) |
\(15\) |
\(8\) |
a) Khoảng biến thiên là \(20 - 0 = 20\).
b) Số trung bình của mẫu là \(\bar x = \frac{{2,5.3 + 7,5.12 + 12,5.15 + 17,5.8}}{{3 + 12 + 15 + 8}} \approx 11,18\).
c) Phương sai \({S^2} = \frac{1}{{38}}\left( {{{3.2,5}^2} + {{12.7,5}^2} + {{15.12,5}^2} + {{8.17,5}^2}} \right) - {\left( {11,18} \right)^2} \approx 19,42\).
d) Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}} \in \left[ {5;10} \right)\). Do đó tứ phân vị thứ nhất là
\({Q_1} = 5 + \frac{{\frac{{38}}{4} - 3}}{{12}}.\left( {10 - 5} \right) \approx 7,71\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}} \in \left[ {10;15} \right)\). Do đó tứ phân vị thứ ba là
\({Q_3} = 10 + \frac{{3.\frac{{38}}{4} - \left( {3 + 12} \right)}}{{15}}.\left( {15 - 10} \right) = 14,5\)
Vậy khoảng tứ phân vị là \({\Delta _{Q(X)}} = {Q_3} - {Q_1} \approx 14,5 - 7,71 \approx 6,79\)
Do \({\Delta _{Q(X)}} \approx 6,79 < {\Delta _{Q(Y)}} = 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Số lượng khách du lịch đến tỉnh Quảng Ninh được cho dưới bảng sau

Cỡ mẫu n = 3 + 9 + 3 + 2 = 17.
Gọi x1; x2; …; x17 là số khách đến Quảng Ninh du lịch được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_4} + {x_5}}}{2}\) Î [5; 9) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{17}}{4} - 3}}{9}.4 = \frac{{50}}{9}\).
Ta có \({Q_3} = \frac{{{x_{13}} + {x_{14}}}}{2}\) Î [9; 13) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 9 + \frac{{\frac{{3.17}}{4} - 12}}{3}.4 = 10\).
Khoảng tứ phân vị là DQ = 10 – \(\frac{{50}}{9}\) ≈ 4,44.
Trả lời: 4,44.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.