Một công ty bất động sản thực hiện cuộc khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:
Độ lệch chuẩn (làm tròn đến hàng phần trăm) của mức giá đất là bao nhiêu?
Một công ty bất động sản thực hiện cuộc khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:

Độ lệch chuẩn (làm tròn đến hàng phần trăm) của mức giá đất là bao nhiêu?
Quảng cáo
Trả lời:


Mức giá trung bình của công ty là \(\overline x = \frac{{75.12 + 105.16 + 179.20 + 96.24 + 45.28}}{{75 + 105 + 179 + 96 + 45}} = 19,448\).
Phương sai của mức giá là
\({s^2} = \frac{{{{75.12}^2} + {{105.16}^2} + {{179.20}^2} + {{96.24}^2} + {{45.28}^2}}}{{75 + 105 + 179 + 96 + 45}} - {19,448^2} = 21,487296\).
Độ lệch chuẩn: \(s = \sqrt {21,487296} \approx 4,64\).
Trả lời: 4,64.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có bảng thống kê thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X
Thời gian (phút) |
\(\left[ {0;5} \right)\) |
\(\left[ {5;10} \right)\) |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
Giá trị đại diện |
\(2,5\) |
\(7,5\) |
\(12,5\) |
\(17,5\) |
Số bệnh nhân |
\(3\) |
\(12\) |
\(15\) |
\(8\) |
a) Khoảng biến thiên là \(20 - 0 = 20\).
b) Số trung bình của mẫu là \(\bar x = \frac{{2,5.3 + 7,5.12 + 12,5.15 + 17,5.8}}{{3 + 12 + 15 + 8}} \approx 11,18\).
c) Phương sai \({S^2} = \frac{1}{{38}}\left( {{{3.2,5}^2} + {{12.7,5}^2} + {{15.12,5}^2} + {{8.17,5}^2}} \right) - {\left( {11,18} \right)^2} \approx 19,42\).
d) Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}} \in \left[ {5;10} \right)\). Do đó tứ phân vị thứ nhất là
\({Q_1} = 5 + \frac{{\frac{{38}}{4} - 3}}{{12}}.\left( {10 - 5} \right) \approx 7,71\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}} \in \left[ {10;15} \right)\). Do đó tứ phân vị thứ ba là
\({Q_3} = 10 + \frac{{3.\frac{{38}}{4} - \left( {3 + 12} \right)}}{{15}}.\left( {15 - 10} \right) = 14,5\)
Vậy khoảng tứ phân vị là \({\Delta _{Q(X)}} = {Q_3} - {Q_1} \approx 14,5 - 7,71 \approx 6,79\)
Do \({\Delta _{Q(X)}} \approx 6,79 < {\Delta _{Q(Y)}} = 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Số lượng khách du lịch đến tỉnh Quảng Ninh được cho dưới bảng sau

Cỡ mẫu n = 3 + 9 + 3 + 2 = 17.
Gọi x1; x2; …; x17 là số khách đến Quảng Ninh du lịch được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_4} + {x_5}}}{2}\) Î [5; 9) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{17}}{4} - 3}}{9}.4 = \frac{{50}}{9}\).
Ta có \({Q_3} = \frac{{{x_{13}} + {x_{14}}}}{2}\) Î [9; 13) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 9 + \frac{{\frac{{3.17}}{4} - 12}}{3}.4 = 10\).
Khoảng tứ phân vị là DQ = 10 – \(\frac{{50}}{9}\) ≈ 4,44.
Trả lời: 4,44.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.