Câu hỏi:

31/08/2025 1,378 Lưu

Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;0; - 2} \right),\;B\left( { - 2;3;4} \right),\,C\left( {4; - 6;1} \right)\).

(a) Tọa độ trọng tâm G của tam giác là \(\left( {1; - 1;1} \right)\).

(b) \(\overrightarrow {AB} = \left( {3; - 3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( { - 3;6; - 3} \right).\)

(c) Tam giác \(ABC\)là tam giác cân .

(d) Nếu \(ABDC\) là hình bình hành thì tọa độ điểm D là \(\left( {7; - 9; - 5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 - 2 + 4}}{3} = 1\\{y_G} = \frac{{0 + 3 - 6}}{3} = - 1\\{z_G} = \frac{{ - 2 + 4 + 1}}{3} = 1\end{array} \right.\)\( \Rightarrow G\left( {1; - 1;1} \right)\).

b) Do \(\overrightarrow {AB} = \left( { - 3;3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( {3; - 6;3} \right).\)

c) Do \(AB = AC = 3\sqrt 6 \) nên tam giác \(ABC\) cân tại A.

d) Gọi \(D\left( {x;y;z} \right)\), vì \(ABDC\) là hình bình hành nên

\(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow \left( { - 3;3;6} \right) = \left( {x - 4;y + 6;z - 1} \right) \Leftrightarrow \left( {x;y;z} \right) = \left( {1; - 3;7} \right)\) .

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(\overrightarrow {MN} = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).

Do đó a + b + c = 1485.

Trả lời: 1485.

Lời giải

a) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\).

b) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 2 + 0}}{3}\\{y_G} = \frac{{ - 2 + 1 + 3}}{3}\\{z_G} = \frac{{0 + \left( { - 2} \right) + 4}}{3}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 1\\{y_G} = \frac{2}{3}\\{z_G} = \frac{2}{3}\end{array} \right.\)\( \Rightarrow G\left( {1;\frac{2}{3};\frac{2}{3}} \right)\).

c) Hình chiếu của B trên mặt phẳng Oxy là (2; 1; 0).

d) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\); \(\overrightarrow {BC} = \left( { - 2;2;6} \right)\).

\(\overrightarrow x = 2\overrightarrow {AB} - 3\overrightarrow {BC} \) = (2.1 – 3.(−2); 2.3 – 3.2; 2.(−2) – 3.6) = (8; 0; −22).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.