Câu hỏi:

31/08/2025 7 Lưu

Trong không gian Oxyz, cho tam giác ABC có các đỉnh A(1; −2; 0), B(2; 1; −2), C(0; 3; 4). Khi đó:

(a) Tọa độ của vectơ \(\overrightarrow {AB} \) là (1; 3; −2).

(b) Tọa độ trọng tâm của tam giác ABC là \(G\left( {1;\frac{2}{3};\frac{2}{3}} \right)\).

(c) Tọa độ hình chiếu của điểm B trên mặt phẳng Oxy là H(0; 0; −2).

(d)\(\overrightarrow x = 2\overrightarrow {AB} - 3\overrightarrow {BC} \). Tọa độ của vectơ \(\overrightarrow x = \left( { - 4;12;14} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\).

b) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 2 + 0}}{3}\\{y_G} = \frac{{ - 2 + 1 + 3}}{3}\\{z_G} = \frac{{0 + \left( { - 2} \right) + 4}}{3}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 1\\{y_G} = \frac{2}{3}\\{z_G} = \frac{2}{3}\end{array} \right.\)\( \Rightarrow G\left( {1;\frac{2}{3};\frac{2}{3}} \right)\).

c) Hình chiếu của B trên mặt phẳng Oxy là (2; 1; 0).

d) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\); \(\overrightarrow {BC} = \left( { - 2;2;6} \right)\).

\(\overrightarrow x = 2\overrightarrow {AB} - 3\overrightarrow {BC} \) = (2.1 – 3.(−2); 2.3 – 3.2; 2.(−2) – 3.6) = (8; 0; −22).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: C

\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.3 + 0.\left( { - 5} \right) + \left( { - 1} \right).6}}{{\sqrt {{2^2} + {0^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{3^2} + {{\left( { - 5} \right)}^2} + {6^2}} }} = 0\)\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \).

Câu 2

Lời giải

Đáp án đúng: A

Gọi M(x; y; z).

Ta có \(\overrightarrow {MA} = \left( {3 - x;1 - y; - 2 - z} \right);\overrightarrow {MB} = \left( {2 - x; - 3 - y;5 - z} \right)\).

Vì M thuộc đoạn AB và MA = 2MB nên \(\overrightarrow {MA} = - 2\overrightarrow {MB} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - x = - 2\left( {2 - x} \right)\\1 - y = - 2\left( { - 3 - y} \right)\\ - 2 - z = - 2\left( {5 - z} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{7}{3}\\y = - \frac{5}{3}\\z = \frac{8}{3}\end{array} \right.\).

Vậy \(M\left( {\frac{7}{3}; - \frac{5}{3};\frac{8}{3}} \right)\).