Trong không gian với hệ trục tọa độ \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(B\) trùng với gốc tọa độ \(O\)và tọa độ các điểm \(A\left( {3;0;0} \right)\), \(D\left( {3;1;0} \right)\), \(B'\left( {0;0;5} \right)\). Gọi tọa độ \(C'\left( {m;n;p} \right)\). Tính \({m^2} + {n^2} + {p^2}\).
Quảng cáo
Trả lời:

Vì tọa độ điểm \(A\left( {3;0;0} \right)\)\( \Rightarrow \overrightarrow {BA} = 3\,\overrightarrow i \,\)
Vì tọa độ điểm \(D\left( {3;1;0} \right)\)\( \Rightarrow \,\,\overrightarrow {BD} = 3\overrightarrow i \,\, + \overrightarrow j \)
Mà \(\overrightarrow {BD} = \overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BC} = \overrightarrow {BD} - \overrightarrow {BA} = 3\overrightarrow i + \overrightarrow j - 3\overrightarrow i = \overrightarrow j \)
Vì tọa độ điểm \(B'\left( {0;0;5} \right) \Rightarrow \overrightarrow {BB'} = 5\overrightarrow k \)
Ta có \(\overrightarrow {BC'} = \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow j + 5\overrightarrow k \Rightarrow C'\left( {0;1;5} \right)\). Vậy \({m^2} + {n^2} + {p^2} = 26\).
Trả lời: 26.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có \(\overrightarrow {MN} = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).
Do đó a + b + c = 1485.
Trả lời: 1485.
Lời giải
a) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 - 2 + 4}}{3} = 1\\{y_G} = \frac{{0 + 3 - 6}}{3} = - 1\\{z_G} = \frac{{ - 2 + 4 + 1}}{3} = 1\end{array} \right.\)\( \Rightarrow G\left( {1; - 1;1} \right)\).
b) Do \(\overrightarrow {AB} = \left( { - 3;3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( {3; - 6;3} \right).\)
c) Do \(AB = AC = 3\sqrt 6 \) nên tam giác \(ABC\) cân tại A.
d) Gọi \(D\left( {x;y;z} \right)\), vì \(ABDC\) là hình bình hành nên
\(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow \left( { - 3;3;6} \right) = \left( {x - 4;y + 6;z - 1} \right) \Leftrightarrow \left( {x;y;z} \right) = \left( {1; - 3;7} \right)\) .
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {\frac{7}{3}; - \frac{5}{3};\frac{8}{3}} \right)\).
(4; 5; −9).
\(\left( {\frac{3}{2}; - 5;\frac{{17}}{2}} \right)\).
(1; −7; 12).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
(−7; 0; −4).
(−7; 0; 4).
(7; 0; −4).
(7; 0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.