Câu hỏi:

31/08/2025 21 Lưu

Số lượng khách hàng nữ mua hàng thời trang trong một ngày của một cửa hàng được thống kê trong bảng tần số ghép nhóm như sau

index_html_c2ec438e2e01b75a.png

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên khoảng

A.

Q = 16,67.

B.

Q = 16,61.

C.

Q = 15,67.

D.

Q = 14,57.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Cỡ mẫu n = 3 + 9 + 6 + 4 + 2 = 24.

Gọi x1; x2; ...; x24 là tuổi của 24 khách hàng nữ được sắp theo tứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_6} + {x_7}}}{2}\) mà \({x_6};{x_7} \in \left[ {30;40} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 30 + \frac{{\frac{{24}}{4} - 3}}{9}.10 = \frac{{100}}{3}\).

\({Q_3} = \frac{{{x_{18}} + {x_{19}}}}{2}\) mà \({x_{18}} \in \left[ {40;50} \right),{x_{19}} \in \left[ {50;60} \right)\) nên Q3 = 50.

Suy ra \({\Delta _Q} = {Q_3} - {Q_1} = 50 - \frac{{100}}{3} \approx 16,67\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên R = 30 – 0 = 30.

b) Gọi x1; x2; …; x30 là thời gian sử dụng điện thoại của 30 học sinh được sắp theo thứ tự không giảm.

Ta có Q3 = x23  [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

c)

Thời gian (giờ)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

[20; 25)

[25; 30)

Giá trị đại diện

2,5

7,5

12,5

17,5

22,5

27,5

Số học sinh

2

6

8

9

3

2

Ta có \(\overline x = \frac{{2,5.2 + 7,5.6 + 12,5.8 + 17,5.9 + 22,5.3 + 27,5.2}}{{30}} \approx 14,3\).

d) Ta có Q1 = x8  [5; 10) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = \frac{{115}}{{12}}\).

Q3 = x23  [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 15 + \frac{{\frac{{3.30}}{4} - 16}}{9}.5 = \frac{{335}}{{18}}\).

Suy ra \({\Delta _Q} = \frac{{335}}{{18}} - \frac{{115}}{{12}} \approx 9,03 < 10\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

Lời giải

a) Cỡ mẫu n = 40.

Gọi x1; x2; ...; x40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12A được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{10}} + {x_{11}}}}{2}\) mà x10; x11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 6}}{{20}}.2 = \frac{{22}}{5}\).

Ta có \({Q_3} = \frac{{{x_{30}} + {x_{31}}}}{2}\) mà x30; x31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 26}}{8}.2 = 7\).

Suy ra \({\Delta _Q} = 7 - \frac{{22}}{5} = \frac{{13}}{5} = 2,6\).

b) Khoảng biến thiên điểm thi của lớp 12A là R = 10 – 0 = 10.

c) Cỡ mẫu n = 40.

Gọi y1; y2; ...; y40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12B được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{y_{10}} + {y_{11}}}}{2}\) mà y10; y11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 5}}{{10}}.2 = 5\).

Ta có \({Q_3} = \frac{{{y_{30}} + {y_{31}}}}{2}\) mà y30; y31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 15}}{{18}}.2 = \frac{{23}}{3}\).

Suy ra \({\Delta _Q} = \frac{{23}}{3} - 5 = \frac{8}{3} \approx 2,7\).

Nên điểm thi môn Toán của lớp 12A đồng đều hơn lớp 12B.

d) Khoảng biến thiên điểm thi của lớp 12B là 10 − 2 = 8.

Nếu so sánh theo khoảng biến thiên thì mức độ phân tán điểm thi của lớp 12B đồng đều hơn.

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP