Câu hỏi:

31/08/2025 176 Lưu

Tìm hiểu thời gian sử dụng điện thoại trong tuần đầu tháng 6/2024 của kỳ nghỉ hè lớp chủ nhiệm. Giáo viên chủ nhiệm thi được kết quả sau:

index_html_d4dd79e335dad9ad.png

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25.

(b) Nhóm chứa tứ phân vị thứ ba là [15; 20).

(c) Số trung bình của mẫu số liệu là 10.

(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm này lớn hơn 10.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên R = 30 – 0 = 30.

b) Gọi x1; x2; …; x30 là thời gian sử dụng điện thoại của 30 học sinh được sắp theo thứ tự không giảm.

Ta có Q3 = x23  [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

c)

Thời gian (giờ)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

[20; 25)

[25; 30)

Giá trị đại diện

2,5

7,5

12,5

17,5

22,5

27,5

Số học sinh

2

6

8

9

3

2

Ta có \(\overline x = \frac{{2,5.2 + 7,5.6 + 12,5.8 + 17,5.9 + 22,5.3 + 27,5.2}}{{30}} \approx 14,3\).

d) Ta có Q1 = x8  [5; 10) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = \frac{{115}}{{12}}\).

Q3 = x23  [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 15 + \frac{{\frac{{3.30}}{4} - 16}}{9}.5 = \frac{{335}}{{18}}\).

Suy ra \({\Delta _Q} = \frac{{335}}{{18}} - \frac{{115}}{{12}} \approx 9,03 < 10\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cỡ mẫu n = 40.

Gọi x1; x2; ...; x40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12A được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{10}} + {x_{11}}}}{2}\) mà x10; x11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 6}}{{20}}.2 = \frac{{22}}{5}\).

Ta có \({Q_3} = \frac{{{x_{30}} + {x_{31}}}}{2}\) mà x30; x31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 26}}{8}.2 = 7\).

Suy ra \({\Delta _Q} = 7 - \frac{{22}}{5} = \frac{{13}}{5} = 2,6\).

b) Khoảng biến thiên điểm thi của lớp 12A là R = 10 – 0 = 10.

c) Cỡ mẫu n = 40.

Gọi y1; y2; ...; y40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12B được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{y_{10}} + {y_{11}}}}{2}\) mà y10; y11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 5}}{{10}}.2 = 5\).

Ta có \({Q_3} = \frac{{{y_{30}} + {y_{31}}}}{2}\) mà y30; y31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 15}}{{18}}.2 = \frac{{23}}{3}\).

Suy ra \({\Delta _Q} = \frac{{23}}{3} - 5 = \frac{8}{3} \approx 2,7\).

Nên điểm thi môn Toán của lớp 12A đồng đều hơn lớp 12B.

d) Khoảng biến thiên điểm thi của lớp 12B là 10 − 2 = 8.

Nếu so sánh theo khoảng biến thiên thì mức độ phân tán điểm thi của lớp 12B đồng đều hơn.

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP