Thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X được cho trong bảng sau:

(a) Khoảng biến biến thiên của mẫu số liệu là \(15\).
(b) Số trung bình của mẫu là \(10,18\).
© Phương sai của mẫu số liệu là \(19,42\).
(d) Từ một mẫu số liệu về thời gian chờ khám bệnh của các bệnh nhân tại phòng khám Y, người ta tính được khoảng tứ phân vị bằng \(9,23\). Như vậy, thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X. (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

Ta có bảng thống kê thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X

a) Khoảng biến thiên là \(20 - 0 = 20\).
b) Số trung bình của mẫu là \(\bar x = \frac{{2,5.3 + 7,5.12 + 12,5.15 + 17,5.8}}{{3 + 12 + 15 + 8}} \approx 11,18\).
c) Phương sai \({S^2} = \frac{1}{{38}}\left( {3.2,{5^2} + 12.7,{5^2} + 15.12,{5^2} + 8.17,{5^2}} \right) - {\left( {11,18} \right)^2} \approx 19,42\).
d)Tìmkhoảng tứ phân vị thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X:
- Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}} \in \left[ {5;10} \right)\). Do đó tứ phân vị thứ nhất là
\({Q_1} = 5 + \frac{{\frac{{38}}{4} - 3}}{{12}}.\left( {10 - 5} \right) \approx 7,71\).
- Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}} \in \left[ {10;15} \right)\). Do đó tứ phân vị thứ ba là
\({Q_3} = 10 + \frac{{3.\frac{{38}}{4} - \left( {3 + 12} \right)}}{{15}}.\left( {15 - 10} \right) = 14,5\)
Vậy khoảng tứ phân vị là \({\Delta _{Q(X)}} = {Q_3} - {Q_1} \approx 14,5 - 7,71 \approx 6,79\)
Do \({\Delta _{Q(X)}} \approx 6,79 < {\Delta _{Q(Y)}} = 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Số trung bình cộng của mẫu số liệu ghép nhóm là:
\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\]
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ = 11,4\end{array}\]
Trả lời: 11,4.
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 300 - 50 = 250\left( {{\rm{\;km}}} \right)\).
b) Cỡ mẫu \(n = 5 + 10 + 9 + 4 + 2 = 30\).
Gọi \({x_1}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về độ dài quãng đường bác tài xế đã lái xe mỗi ngày trong một tháng được xếp theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in \left[ {100;150} \right)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 100 + \frac{{\frac{{30}}{4} - 5}}{{10}}\left( {150 - 100} \right) = 112,5\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in \left[ {150;200} \right)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 150 + \frac{{\frac{{3.30}}{4} - \left( {5 + 10} \right)}}{9}\left( {200 - 150} \right) = \frac{{575}}{3}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({{\rm{\Delta }}_Q} = {Q_3} - {Q_1} = \frac{{575}}{3} - 112,5 \approx 79,17\).
c) Ta có bảng sau:

Số trung bình của mẫu số liệu ghép nhóm là: \(\overline x = \frac{{5.75 + 10.125 + 9.175 + 4.225 + 2.275}}{{30}} = 155\)
d) Phương sai của mẫu số liệu ghép nhóm là:
\({S^2} = \frac{1}{{30}}\left[ {{{5.75}^2} + {{10.125}^2} + {{9.175}^2} + {{4.225}^2} + {{2.275}^2}} \right] - {155^2} = 3100\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {{S^2}} = \sqrt {3100} \approx 55,68\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.