Câu hỏi:

31/08/2025 25 Lưu

Sau khi điều tra về số học sinh trong 100 lớp học, người ta chia mẫu số liệu đó thành 5 nhóm như sau:

Sau khi điều tra về số học sinh trong 100 lớp học, người ta chia mẫu số liệu đó thành 5 nhóm như sau:

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả đến hàng phần trăm) (ảnh 1)

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Sau khi điều tra về số học sinh trong 100 lớp học, người ta chia mẫu số liệu đó thành 5 nhóm như sau:

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả đến hàng phần trăm) (ảnh 2)

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{37.9 + 39.15 + 41.25 + 43.30 + 45.21}}{{100}} = 41,78\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{100}}\left[ {9.{{\left( {37 - 41,78} \right)}^2} + 15.{{\left( {39 - 41,78} \right)}^2} + 25.{{\left( {41 - 41,78} \right)}^2} + 30.{{\left( {43 - 41,78} \right)}^2} + 21.{{\left( {45 - 41,78} \right)}^2}} \right]} \\ = 2,45\end{array}\]

Trả lời: 2,45.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Mẫu số liệu trên có khoảng biến thiên \[R = 80 - 0 = 80.\]

b) Vì có 30 tỉnh, thành phố có tỉ lệ che phủ rừng nhỏ hơn 40% .

c) Cỡ mẫu n = 17 + 6 + 3 + 4 + 9 + 15 + 5 + 1 = 60.

Gọi x1; x2; …; x60 là tỉ lệ che phủ rừng của 60 tỉnh được xếp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; x16 [0; 10] nên nhóm này chứa tứ phân vị thứ nhất.

Khi đó \({Q_1} = 0 + \frac{{\frac{{60}}{4} - 0}}{{17}}.10 = \frac{{150}}{{17}}\).

Ta có \({Q_3} = \frac{{{x_{45}} + {x_{46}}}}{2}\) mà x45; x46 [50; 60] nên nhóm này chứa tứ phân vị thứ ba.

Khi đó \({Q_3} = 50 + \frac{{\frac{{3.60}}{4} - 39}}{{15}}.10 = 54\).

Suy ra \({\Delta _Q} = 54 - \frac{{150}}{{17}} \approx 45,18\).

d) Ta có

Bảng bên dưới cho ta bảng tần số ghép nhóm về số liệu thống kê tỉ lệ che phủ rừng (đơn vị: %) của 60 tỉnh, thành phố ở Việt Nam (không bao gồm Hưng Yên, Vĩnh Long, Cần Thơ tính đến ngày 31/12 (ảnh 1)

Trung bình của mẫu số liệu:

\[\overline x = \frac{{17.5 + 6.15 + 3.25 + 4.35 + 9.45 + 15.55 + 5.65 + 1.75}}{{60}} = \frac{{101}}{3} \approx 33,67\]

Phương sai của mẫu số liệu:

\[\begin{array}{l}{s^2} = \frac{{17.{{\left( {\overline x - 5} \right)}^2} + 6.{{\left( {\overline x - 15} \right)}^2} + 3.{{\left( {\overline x - 25} \right)}^2} + 4.{{\left( {\overline x - 35} \right)}^2}}}{{60}}\\{\rm{ + }}\frac{{9.{{\left( {\overline x - 45} \right)}^2} + 15.{{\left( {\overline x - 55} \right)}^2} + 5.{{\left( {\overline x - 65} \right)}^2} + 1.{{\left( {\overline x - 75} \right)}^2}}}{{60}} = \frac{{23257}}{{45}}.\end{array}\]

\[ \Rightarrow s = \sqrt {\frac{{23257}}{{45}}} \approx 22,73.\]

Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.

Lời giải

Sau khi điều tra về cân nặng của 40 học sinh trong lớp 12A ở một trường THPT X thu được kết quả trong mẫu ghép nhóm sau:

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả  (ảnh 2)

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ = 11,4\end{array}\]

Trả lời: 11,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP