Câu hỏi:

10/09/2025 7 Lưu

Cho hình thang \(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\)\(\widehat {BAC} = \widehat {ABD}.\) Gọi \(O\) là giao điểm của \(AC\)\(BD.\)

          a) \(OA = OB.\)

          b) Tam giác \(OCD\) cân tại \(C.\)

          c) \(AC > BD.\)

          d) \(AD = BC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

VVVVVVVV (ảnh 1)

a) Đúng.

Tam giác \(AOB\) có: \(\widehat {BAO} = \widehat {ABO}\) nên tam giác \(AOB\) cân tại \(O.\) Do đó, \(OA = OB.\)

b) Sai.

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {BAO} = \widehat {OCD}\) (hai góc so le trong), \(\widehat {ABO} = \widehat {ODC}\) (hai góc so le trong).

\(\widehat {BAO} = \widehat {ABO}\;\left( {gt} \right)\) nên \(\widehat {ODC} = \widehat {OCD}.\) Do đó, tam giác \(OCD\) cân tại \(O.\)

c) Sai.

tam giác \(OCD\) cân tại \(O\) nên \(OC = OD.\)

\(OA = OB\;\left( {cmt} \right)\) nên \(OA + OC = OB + OD\) hay \(AC = BD.\)

d) Đúng.

Hình thang \(ABCD\) có: \(AC = BD\) nên \(ABCD\) là hình thang cân. Do đó, \(AD = BC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

BBBBBBB (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;AC = BD,\;\widehat {ADC} = \widehat {BCD}.\)

Tam giác \(ABD\) và tam giác \(BAC\) có: \(AD = BC,\;AC = BD,\;AB\) chung.

Do đó, \(\Delta ABD = \Delta BAC\;\left( {c - c - c} \right).\) Suy ra, \(\widehat {ABP} = \widehat {BAP}\) nên tam giác \(APB\) cân tại \(P.\)

Suy ra: \(AP = PB.\) Do đó, điểm \(P\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 1 \right).\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {ADC} = \widehat {QAB},\;\widehat {QBA} = \widehat {BCD}\) (các góc đồng vị).

Lại có: \(\widehat {ADC} = \widehat {BCD}\;\left( {cmt} \right)\) nên \(\widehat {QAB} = \widehat {QBA}.\) Do đó, tam giác \(QAB\) cân tại \(Q.\)

Suy ra \(QA = QB.\) Do đó, điểm \(Q\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(PQ\) là đường trung trực của đoạn thẳng \(AB.\)

Suy ra: \(PQ \bot AB\) tại \(I.\) Vậy \(\widehat {QIB} = 90^\circ .\)

Lời giải

Đáp án: \(150\)

VVVVVVV (ảnh 1)

Kẻ \(Bk\) là tia đối của tia \(BC.\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat C = \widehat {{B_2}}\) (hai góc đồng vị).

Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) (hai góc kề bù) nên \(\widehat C + \widehat {{B_1}} = 180^\circ .\) Suy ra: \(\widehat {{B_1}} = 180^\circ - \widehat C.\)

Theo giả thiết: \(\widehat {{B_1}} - \widehat C = 60^\circ \) nên \(180^\circ - \widehat C - \widehat C = 60^\circ .\) Suy ra: \(\widehat C = 60^\circ .\) Do đó, \(\widehat {{B_1}} = 180^\circ - 60^\circ = 120^\circ .\)

Lại có: \(\widehat C - \widehat D = 30^\circ \) nên \(\widehat D = 60^\circ - 30^\circ = 30^\circ .\)

Ta có: \[\widehat A + \widehat {{B_1}} + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)

Suy ra: \[\widehat A = 360^\circ - \widehat {{B_1}} - \widehat C - \widehat D = 360^\circ - 120^\circ - 60^\circ - 30^\circ = 150^\circ .\]

Vậy \[\widehat A = 150^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP