Câu hỏi:

10/09/2025 47 Lưu

Cho hình thang \(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\)\(\widehat {BAC} = \widehat {ABD}.\) Gọi \(O\) là giao điểm của \(AC\)\(BD.\)

          a) \(OA = OB.\)

          b) Tam giác \(OCD\) cân tại \(C.\)

          c) \(AC > BD.\)

          d) \(AD = BC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

VVVVVVVV (ảnh 1)

a) Đúng.

Tam giác \(AOB\) có: \(\widehat {BAO} = \widehat {ABO}\) nên tam giác \(AOB\) cân tại \(O.\) Do đó, \(OA = OB.\)

b) Sai.

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {BAO} = \widehat {OCD}\) (hai góc so le trong), \(\widehat {ABO} = \widehat {ODC}\) (hai góc so le trong).

\(\widehat {BAO} = \widehat {ABO}\;\left( {gt} \right)\) nên \(\widehat {ODC} = \widehat {OCD}.\) Do đó, tam giác \(OCD\) cân tại \(O.\)

c) Sai.

tam giác \(OCD\) cân tại \(O\) nên \(OC = OD.\)

\(OA = OB\;\left( {cmt} \right)\) nên \(OA + OC = OB + OD\) hay \(AC = BD.\)

d) Đúng.

Hình thang \(ABCD\) có: \(AC = BD\) nên \(ABCD\) là hình thang cân. Do đó, \(AD = BC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

VVVV (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\)\(AB\,{\rm{//}}\,CD\) nên tứ giác \(ABCD\) là hình thang.

\(AC = BD\) nên tứ giác \(ABCD\) là hình thang cân.

b) Sai.

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat {DAB} = \widehat {ABC} = 100^\circ .\) Vậy \(\widehat {DAB} = 100^\circ .\)

c) Đúng.  

Kẻ \(Bd\) là tia đối của tia \(BC.\)\(AB\,{\rm{//}}\,CD\) nên \(\widehat C = \widehat {ABd}\) (hai góc đồng vị).

\(\widehat {ABd} + \widehat {ABC} = 180^\circ \) (hai góc kề bù) nên \(\widehat {ABC} + \widehat {BCD} = 180^\circ .\) Vậy \(\widehat {ABC} + \widehat C = 180^\circ .\)

d) Đúng.

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat D = \widehat C.\)

Ta có: \(\widehat {ABC} + \widehat C = 180^\circ \) nên \(100^\circ + \widehat C = 180^\circ \) nên \(\widehat C = 80^\circ .\) Vậy \(\widehat D = 80^\circ .\)

Lời giải

Đáp án: \(60\)

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat A = \widehat B,\;\widehat C = \widehat D.\)

Lại có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)

\(\widehat A + \widehat A + \widehat C + \widehat C = 360^\circ \)

\(2\left( {\widehat A + \widehat C} \right) = 360^\circ \)

\(\widehat A + \widehat C = 180^\circ .\)

\(\widehat A = 2\widehat C\) nên \(\widehat C + 2\widehat C = 180^\circ .\) Vậy \(\widehat C = 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Tứ giác \(MNOP\) và tứ giác \(ABCD.\)               
B. Tứ giác \(EHGF\) và tứ giác \(ABCD.\)                
C. Tứ giác \(EHGF,\) tứ giác \(ABCD\) và tứ giác \(MNOP.\)          
D. Cả bốn tứ giác đều là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1.\)                         
B. \(2.\)                         
C. \(3.\)  
D. \(0.\)              

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat B = 50^\circ .\)                           
B. \(\widehat B = 60^\circ .\)                             
C. \(\widehat B = 70^\circ .\)      
D. \(\widehat B = 80^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai đường chéo vuông góc với nhau.                     
B. Hai đường chéo cắt nhau tại trung điểm mỗi đường.                                              
C. Hai đường chéo bằng nhau.                                                 
D. Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP