Câu hỏi:

11/09/2025 64 Lưu

Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AC,{\rm{ }}CD.\) Giao tuyến của hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right)\) là:

A.

đường thẳng \(MN.\)

B.

đường thẳng \(AM.\)

C.

đường thẳng \(BG{\rm{ }}(G\) là trọng tâm tam giác \(ACD).\)

D.

đường thẳng \(AH{\rm{ }}(H\) là trực tâm tam giác \(ACD).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AC,{\rm{ }}CD.\) Giao tuyến của hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right)\) là: (ảnh 1)

Ta có \(B \in \left( {MBD} \right)\)\( \cap \left( {ABN} \right)\).

Xét \[\left( {ACD} \right)\], gọi \[G = AN \cap MD\]. Khi đó \[G\] là trọng tâm tam giác \[ACD\].

\[\begin{array}{l}G \in AN \subset \left( {ABN} \right)\\G \in MD \subset \left( {MBD} \right)\end{array}\]

Suy ra \(G \in \left( {MBD} \right)\)\( \cap \left( {ABN} \right)\).

Vậy \(\left( {MBD} \right)\)\( \cap \left( {ABN} \right) = BG\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Kí hiệu \({u_n}\)là chiều cao so với mực nước biển của thửa ruộng ở bậc thứ \(n\).

Khi đó, dãy số \(\left( {{u_n}} \right)\)là một cấp số cộng.

b) Đúng. Số hạng đầu \({u_1} = 950\).

c) Sai. Cấp số cộng có công sai \(d = 1,5\).

d) Đúng. Ta có \({u_{12}} = {u_1} + 11{\rm{d}} = 950 + 11 \cdot 1,5 = 966,5\).

Vậy thửa ruộng ở bậc thứ 12 có độ cao 966,5 m so với mực nước biển.

Lời giải

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[M,\,N\] lần lượt thuộc cạnh \[SB,\,SC\] sao cho \[SM = \frac{1}{2}SB,\,SN = \frac{1}{2}SC\]. (ảnh 1)

a) Trong tam giác \(SBC\) có \[\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{1}{2}\]\[ \Rightarrow MN{\rm{//}}BC\].

b) Xét \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\] có \[D\] chung, \[AC\] nằm trong \[\left( {ABCD} \right)\] và \[AC{\rm{//}}\left( \alpha \right)\] nên giao tuyến của 2 mặt phẳng \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\]là đường thẳng qua \[D\] và song song với \[AC\], cắt \[BC\] tại \[P\].

Tứ giác \[ACPD\] là hình bình hành nên \[CP = AD = BC\]. Do đó \(C\) là trung điểm của \(BP\).

Vì \[M,P,K\] đều là điểm chung của \[\left( \alpha \right)\] và \[\left( {SBC} \right)\] nên \[M,P,K\] thẳng hàng.

Tam giác \[SBP\] có 2 trung tuyến \[SC,\,MP\] nên \[K\] là trọng tâm tam giác \[SBP\].

Câu 5

A.

\(2\sin a \cdot \cos a\).

B.

\(2\sin 2a \cdot \cos 2a\).

C.

\(4sina\).

D.

\(\frac{1}{2}\sin 2a \cdot \cos 2a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP