Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N,P\) lần lượt là trung điểm của cạnh \(BC,CD,SA\). Với \(I\) là giao điểm của mặt phẳng \(\left( {MNP} \right)\) và đường thẳng \(SO\), hãy tính tỷ lệ \(\frac{{SI}}{{IO}}\).
Quảng cáo
Trả lời:

Trong mặt phẳng \(\left( {ABCD} \right),MN \cap AC = E\). Suy ra \(E \in \left( {SAC} \right)\).
Trong mặt phẳng \(\left( {SAC} \right)\), \(SO \cap PE = I\). Do đó \(I \in SO\) và \(I \in \left( {MNP} \right)\). Vậy \(I = SO \cap \left( {MNP} \right)\).
Trong mặt phẳng \(\left( {SAC} \right)\) kẻ \(OK{\rm{//}}SA,K \in PE\). Suy ra \(\frac{{OK}}{{SP}} = \frac{{OI}}{{IS}}\) (1).
Mặt khác \(OK{\rm{//}}AP\) nên \(\frac{{OK}}{{AP}} = \frac{{EO}}{{EA}} = \frac{1}{3}\) (2).
Từ (1) và (2) ta có \(\frac{{OI}}{{SI}} = \frac{1}{3}\) (do \(PA = PS\)) \( \Rightarrow \frac{{SI}}{{IO}} = 3\).
Đáp án: 3.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Kí hiệu \({u_n}\)là chiều cao so với mực nước biển của thửa ruộng ở bậc thứ \(n\).
Khi đó, dãy số \(\left( {{u_n}} \right)\)là một cấp số cộng.
b) Đúng. Số hạng đầu \({u_1} = 950\).
c) Sai. Cấp số cộng có công sai \(d = 1,5\).
d) Đúng. Ta có \({u_{12}} = {u_1} + 11{\rm{d}} = 950 + 11 \cdot 1,5 = 966,5\).
Vậy thửa ruộng ở bậc thứ 12 có độ cao 966,5 m so với mực nước biển.
Lời giải
![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[M,\,N\] lần lượt thuộc cạnh \[SB,\,SC\] sao cho \[SM = \frac{1}{2}SB,\,SN = \frac{1}{2}SC\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/blobid3-1757595964.png)
a) Trong tam giác \(SBC\) có \[\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{1}{2}\]\[ \Rightarrow MN{\rm{//}}BC\].
b) Xét \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\] có \[D\] chung, \[AC\] nằm trong \[\left( {ABCD} \right)\] và \[AC{\rm{//}}\left( \alpha \right)\] nên giao tuyến của 2 mặt phẳng \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\]là đường thẳng qua \[D\] và song song với \[AC\], cắt \[BC\] tại \[P\].
Tứ giác \[ACPD\] là hình bình hành nên \[CP = AD = BC\]. Do đó \(C\) là trung điểm của \(BP\).
Vì \[M,P,K\] đều là điểm chung của \[\left( \alpha \right)\] và \[\left( {SBC} \right)\] nên \[M,P,K\] thẳng hàng.
Tam giác \[SBP\] có 2 trung tuyến \[SC,\,MP\] nên \[K\] là trọng tâm tam giác \[SBP\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(2\sin a \cdot \cos a\).
\(2\sin 2a \cdot \cos 2a\).
\(4sina\).
\(\frac{1}{2}\sin 2a \cdot \cos 2a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(AB\) và \(CD\).
\(AC\) và \[BD\].
\(SB\) và \(CD\).
\(SD\) và \(BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.