Câu hỏi:

19/09/2025 232 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N,P\) lần lượt là trung điểm của cạnh \(BC,CD,SA\). Với \(I\) là giao điểm của mặt phẳng \(\left( {MNP} \right)\) và đường thẳng \(SO\), hãy tính tỷ lệ \(\frac{{SI}}{{IO}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N,P\) lần lượt là trung điểm của cạnh \(BC,CD,SA\). Với \(I\) là giao điểm của mặt phẳng \(\left( {MNP} \right)\) và đường (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right),MN \cap AC = E\). Suy ra \(E \in \left( {SAC} \right)\).

Trong mặt phẳng \(\left( {SAC} \right)\), \(SO \cap PE = I\). Do đó \(I \in SO\) và \(I \in \left( {MNP} \right)\). Vậy \(I = SO \cap \left( {MNP} \right)\).

Trong mặt phẳng \(\left( {SAC} \right)\) kẻ \(OK{\rm{//}}SA,K \in PE\). Suy ra \(\frac{{OK}}{{SP}} = \frac{{OI}}{{IS}}\) (1).

Mặt khác \(OK{\rm{//}}AP\) nên \(\frac{{OK}}{{AP}} = \frac{{EO}}{{EA}} = \frac{1}{3}\) (2).

Từ (1) và (2) ta có \(\frac{{OI}}{{SI}} = \frac{1}{3}\) (do \(PA = PS\)) \( \Rightarrow \frac{{SI}}{{IO}} = 3\).

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Kí hiệu \({u_n}\)là chiều cao so với mực nước biển của thửa ruộng ở bậc thứ \(n\).

Khi đó, dãy số \(\left( {{u_n}} \right)\)là một cấp số cộng.

b) Đúng. Số hạng đầu \({u_1} = 950\).

c) Sai. Cấp số cộng có công sai \(d = 1,5\).

d) Đúng. Ta có \({u_{12}} = {u_1} + 11{\rm{d}} = 950 + 11 \cdot 1,5 = 966,5\).

Vậy thửa ruộng ở bậc thứ 12 có độ cao 966,5 m so với mực nước biển.

Lời giải

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[M,\,N\] lần lượt thuộc cạnh \[SB,\,SC\] sao cho \[SM = \frac{1}{2}SB,\,SN = \frac{1}{2}SC\]. (ảnh 1)

a) Trong tam giác \(SBC\) có \[\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{1}{2}\]\[ \Rightarrow MN{\rm{//}}BC\].

b) Xét \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\] có \[D\] chung, \[AC\] nằm trong \[\left( {ABCD} \right)\] và \[AC{\rm{//}}\left( \alpha \right)\] nên giao tuyến của 2 mặt phẳng \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\]là đường thẳng qua \[D\] và song song với \[AC\], cắt \[BC\] tại \[P\].

Tứ giác \[ACPD\] là hình bình hành nên \[CP = AD = BC\]. Do đó \(C\) là trung điểm của \(BP\).

Vì \[M,P,K\] đều là điểm chung của \[\left( \alpha \right)\] và \[\left( {SBC} \right)\] nên \[M,P,K\] thẳng hàng.

Tam giác \[SBP\] có 2 trung tuyến \[SC,\,MP\] nên \[K\] là trọng tâm tam giác \[SBP\].

Câu 5

A.

\(2\sin a \cdot \cos a\).

B.

\(2\sin 2a \cdot \cos 2a\).

C.

\(4sina\).

D.

\(\frac{1}{2}\sin 2a \cdot \cos 2a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP