Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba, và cứ như vậy (số ghế ở hàng sau nhiều hơn 3 ghế so với số ghế ở hàng liền trước nó).
(a) Số ghế ở mỗi hàng lập thành một cấp số cộng.
(b) Số hạng đầu của dãy số là \(18\).
(c) Cấp số cộng có công sai \(d = 3\).
(d) Nếu muốn hội trường đó có sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư đó phải thiết kế tối thiểu 15 hàng ghế.
Quảng cáo
Trả lời:

a) Đúng. Số ghế ở mỗi hàng lập thành một cấp số cộng.
b) Sai. Hàng thứ nhất có 15 ghế ngồi nên số hạng đầu của dãy số là 15.
c) Đúng. Cấp số cộng có công sai \(d = 3\).
d) Sai. Số ghế ở mỗi hàng lập thành một cấp số cộng với số hạng đầu \({u_1} = 15\) và công sai\(d = 3\).
Tổng n số hạng đầu của cấp số cộng trên là \({S_n} = \frac{n}{2}\left[ {2 \cdot 15 + \left( {n - 1} \right) \cdot 3} \right] = \frac{n}{2}\left( {27 + 3n} \right)\).
Muốn hội trường đó có sức chứa ít nhất 870 ghế ngồi thì \({S_n} = 870\), tức là \(\frac{n}{2}\left( {27 + 3n} \right) = 870\).
Do đó, \(27n + 3{n^2} - 1740 = 0\), suy ra \(n = 20,n = - 29\) (loại).
Vậy cần phải thiết kế 20 hàng ghế.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Tập xác định của hàm số đã cho là \(\mathbb{R}\).
b) Sai. Ta có \(y = \sin \left( {2x - \frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2} - 2x} \right) = - \cos 2x\).
Do đó \(y\left( { - x} \right) = - \cos \left( { - 2x} \right) = - \cos 2x = y\left( x \right)\). Vậy hàm số đã cho là hàm số chẵn.
c) Đúng. Ta có \(y = - \cos 2x\) nên hàm số đã cho tuần hoàn với chu kì \(T = \frac{{2\pi }}{2} = \pi \).
d) Sai. Đặt \(t = 2x\). Hàm số đã cho trở thành \(f\left( t \right) = - \cos t\).
Vì \(x \in \left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right] \Rightarrow t \in \left[ {\frac{{ - \pi }}{4};\frac{{2\pi }}{3}} \right]\).
Ta có bảng biến thiên của hàm số \(f\left( t \right) = - \cos t\):
![Cho hàm số \(y = \sin \left( {2x - \frac{\pi }{2}} \right)\).
(a) Tập xác định của hàm số đã cho là \(\left[ { - 1;1} \right]\).
(b) Hàm số đã cho là hàm số lẻ.
(c) Hàm số đã cho là hàm tuần (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/blobid2-1757596434.png)
Từ bảng biến thiên ta có hàm số đạt giá trị lớn nhất bằng \(\frac{1}{2}\).
Lời giải
Ta có \[A = \cos \left( {\alpha + 26\pi } \right) - 2\sin \left( {\alpha - 7\pi } \right) - \cos \left( {1,5\pi } \right) - \cos \left( {\alpha + 2003\frac{\pi }{2}} \right) + \cos \left( {\alpha - 1,5\pi } \right) \cdot \cot \left( {\alpha - 8\pi } \right)\]
\[ = \cos \alpha - 2\sin \left( {\alpha - \pi } \right) - \cos \left( {\frac{\pi }{2}} \right) - \cos \left( {\alpha - \frac{\pi }{2}} \right) + \cos \left( {\alpha + \frac{\pi }{2}} \right) \cdot \cot \alpha \]\[ = \cos \alpha + 2\sin \alpha - 0 - \sin \alpha - \sin \alpha \cdot \cot \alpha = \cos \alpha + \sin \alpha - \cos \alpha = \sin \alpha \].
Mà \(A = a\sin \alpha + b\cos \alpha \) nên \(a = 1,\,\,b = 0\). Từ đó ta có \(3a + b = 3\).
Đáp án: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.