Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q < 0\) và \({u_2} = 4,{u_4} = 9\).
(a) Cấp số nhân có công bội \(q = - \frac{3}{2}\).
(b) Số hạng đầu \({u_1} = - \frac{8}{3}\).
(c) Số hạng \({u_5} = \frac{{27}}{2}\).
(d) \( - \frac{{2187}}{{32}}\) là số hạng thứ 8 của cấp số nhân \(\left( {{u_n}} \right)\).
Quảng cáo
Trả lời:

a) Đúng. Ta có: \({u_2} = {u_1}q = 4,{u_4} = {u_1}{q^3} = 9 \Rightarrow \frac{{{u_4}}}{{{u_2}}} = \frac{{{u_1}{q^3}}}{{{u_1}q}} \Rightarrow \frac{9}{4} = {q^2} \Rightarrow q = - \frac{3}{2}\,\,\,\left( {{\rm{do}}\,\,q < 0} \right)\).
b) Đúng. Thay \(q = - \frac{3}{2}\) vào \({u_2}\), ta được: \({u_1}\left( { - \frac{3}{2}} \right) = 4 \Rightarrow {u_1} = - \frac{8}{3}\).
c) Sai. Cấp số nhân đã cho có số hạng đầu \({u_1} = - \frac{8}{3}\) và công bội \(q = - \frac{3}{2}\). Khi đó \({u_n} = - \frac{8}{3} \cdot {\left( { - \frac{3}{2}} \right)^{n - 1}}\).
Vậy \({u_5} = - \frac{{27}}{2}\).
d) Sai. \( - \frac{{2187}}{{32}} \ne - \frac{8}{3} \cdot {\left( { - \frac{3}{2}} \right)^7}\) nên \( - \frac{{2187}}{{32}}\) không phải là số hạng thứ 8 của cấp số nhân \(\left( {{u_n}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({u_4} = {u_1} \cdot {q^3} \Leftrightarrow 3 = 81 \cdot {q^3} \Leftrightarrow {q^3} = \frac{1}{{27}} = {\left( {\frac{1}{3}} \right)^3} \Leftrightarrow q = \frac{1}{3}.\) Chọn D.
Lời giải
a) Đúng. Ta có \(2\sin x = - \sqrt 2 \Leftrightarrow \sin x = \frac{{ - \sqrt 2 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{4}} \right)\).
b) Sai. Ta có \(\sin x = \sin \left( { - \frac{\pi }{4}} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \pi + \frac{\pi }{4} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{5\pi }}{4} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right).} \right.} \right.\)
Vậy phương trình có các nghiệm là: \(x = - \frac{\pi }{4} + k2\pi ;x = \frac{{5\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
c) Sai. Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{5\pi }}{4}\).
d) Sai. Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là 2 nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.