Câu hỏi:

11/09/2025 52 Lưu

Hưởng ứng phong trào “Nuôi heo đất” của Đoàn trường THPT NHS, \[43\] học sinh lớp 11A của trường đã thực hiện kế hoạch “Nuôi heo đất” như sau: Ngày đầu tiên mỗi bạn nuôi heo \[2000\] đồng, từ ngày thứ hai trở đi mỗi bạn nuôi heo hơn ngày liền trước là \[200\] đồng. Hỏi sau bao nhiêu ngày thì số tiền nuôi heo được là \[5\,658\,800\] đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(n\left( {n \in {\mathbb{N}^*}} \right)\)là số ngày mỗi học sinh nuôi heo đất để số tiền đạt được là \[5658800\] đồng.

Vì lớp 11A có tất cả 43 học sinh nên mỗi học sinh sau n ngày đều có số tiền nuôi heo đất là:

\[\frac{{5658800}}{{43}} = 131600\] đồng.

Ngày đầu tiên mỗi bạn nuôi heo \[2000\] đồng, từ ngày thứ hai trở đi mỗi bạn nuôi heo hơn ngày liền trước là \[200\] đồng, do đó số tiền nuôi heo của mỗi bạn mỗi ngày trong n ngày lập thành một cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = 2000\) và công sai \(d = 200\).

Ta có \({S_n} = {u_1} + {u_2} + .... + {u_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right) \cdot d} \right] = 131600\)

\[ \Leftrightarrow \frac{n}{2}\left[ {4000 + \left( {n - 1} \right) \cdot 200} \right] = 131600 \Leftrightarrow 100{n^2} + 1900n - 131600 = 0\].

Giải phương trình ta được \(n = 28\)(loại đi \(n = - 47\)vì \(n \in {\mathbb{N}^*}\)).

Vậy sau \(28\)ngày thì số tiền nuôi heo đất của lớp 11A thu được là \[5658800\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \[ - a + b \le h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b \le a + b,\forall t\].

Theo bài ra: \[\left\{ \begin{array}{l}a + b = 114,5\\ - a + b = 0,5\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 57\\b = 57,5\end{array} \right.\].

Suy ra \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\].

b) Cabin \(M\) đạt được chiều cao \(86\) m khi \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86\]

\[ \Leftrightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right).\]

Vậy trong vòng quay đầu tiên cabin \(M\) đạt được chiều cao \(86\) m tại thời điểm \(t = 5\) phút hoặc \(t = 10\) phút.

Lời giải

\(A = \cos \left( {5\pi - x} \right) - \sin \left( {\frac{{3\pi }}{2} + x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {3\pi - x} \right)\)

\( = \cos \left( {4\pi + \pi - x} \right) - \sin \left( {2\pi - \frac{\pi }{2} + x} \right) + \tan \left( {\pi + \frac{\pi }{2} - x} \right) + \cot \left( { - x} \right)\)

\( = \cos \left( {\pi - x} \right) + \sin \left( {\frac{\pi }{2} - x} \right) + \tan \left( {\frac{\pi }{2} - x} \right) - \cot x\)

\( = - \cos x + \cos x + \cot x - \cot x = 0\).

Đáp án: 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP