Cho góc \(\alpha \) thỏa mãn \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha - 2\cos \alpha = 1\). Tính \(P = 2\tan \alpha - \cot \alpha .\)
Quảng cáo
Trả lời:

Với \(\pi < \alpha < \frac{{3\pi }}{2}\) suy ra \(\left\{ \begin{array}{l}\sin \alpha < 0\\\cos \alpha < 0\end{array} \right.\).
Ta có \(\left\{ \begin{array}{l}\sin \alpha - 2\cos \alpha = 1\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\end{array} \right. \Rightarrow {\left( {1 + 2\cos \alpha } \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow 5{\cos ^2}\alpha + 4\cos \alpha = 0 \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = 0{\rm{ }}\,\left( {{\rm{loai}}} \right)\\\cos \alpha = - \frac{4}{5}\end{array} \right.\).
Từ hệ thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\sin \alpha = - \frac{3}{5}\) (do \(\sin \alpha < 0\))
và \[\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{4}{3}.\]
Thay \[\tan \alpha = \frac{3}{4}\]và \[\cot \alpha = \frac{4}{3}\]vào \(P\), ta được \[P = \frac{1}{6}.\]
Chọn C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bảng tần số ghép nhóm của mẫu số liệu như sau:

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},{x_2} \in \left[ {0;60} \right);{x_3}, \ldots ,{x_9} \in \left[ {60;120} \right);{x_{10}}, \ldots ,{x_{16}} \in \left[ {120;180} \right)\);
\({x_{17}}, \ldots ,{x_{26}} \in \left[ {180;240} \right);{x_{27}}, \ldots ,{x_{30}} \in \left[ {240;300} \right)\).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({x_{23}} \in \left[ {180;240} \right)\).
Ta có \({Q_3} = 180 + \frac{{\frac{{3 \cdot 30}}{4} - \left( {2 + 7 + 7} \right)}}{{10}} \cdot \left( {240 - 180} \right) = 219\).
Đáp án:\(219\).
Lời giải
Điều kiện xác định: \(\sin x \ne 1 \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.