Câu hỏi:

11/09/2025 59 Lưu

Cho \(\sin a = \frac{1}{3},0 \le a \le \frac{\pi }{2}\).

(a) Giá trị \(\tan a = \frac{{\sqrt 2 }}{4}\).

(b) Giá trị \(\sin 2a = \frac{{2\sqrt 2 }}{9}\).

(c) \(\sin \left( {\frac{\pi }{3} + a} \right) = \frac{{2\sqrt 6 + 1}}{6}\).

(d) \(\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{9 + 4\sqrt 2 }}{8}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Vì \(0 \le a \le \frac{\pi }{2}\) nên \(\cos a \ge 0\).

Ta có \({\cos ^2}a = 1 - {\sin ^2}a = \frac{8}{9} \Rightarrow \cos a = \frac{{2\sqrt 2 }}{3}\).

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\sqrt 2 }}{4}\).

b) Sai. Ta có \(\sin 2a = 2\sin a\cos a = 2 \cdot \frac{1}{3} \cdot \frac{{2\sqrt 2 }}{3} = \frac{{4\sqrt 2 }}{9}\).

c) Đúng. Ta có \(\sin \left( {\frac{\pi }{3} + a} \right) = \sin \frac{\pi }{3}\cos a + \cos \frac{\pi }{3}\sin a = \frac{{2\sqrt 6 + 1}}{6}\).

d)Sai. Ta có \(\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a \cdot \tan \frac{\pi }{4}}} = \frac{{9 + 4\sqrt 2 }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số có tập xác định \(D = \mathbb{R}\).

Ta có \(y = 5 + 4\sin 2x\cos 2x = 5 + 2\sin 4x\).

Do \( - 1 \le \sin 4x \le 1 \Leftrightarrow - 2 \le 2\sin 4x \le 2 \Leftrightarrow 3 \le 5 + 2\sin 4x \le 7 \Leftrightarrow 3 \le y \le 7\).

Suy ra tập giá trị của hàm số là \(T = \left[ {3\,;7} \right]\).

Vậy \(a + b = 3 + 7 = 10\).

Đáp án: 10.

Lời giải

Các hàm số: \(y = \sin 2x\), \(y = \tan x\), \(y = \cot x\) tuần hoàn với chu kỳ \(T = \pi \). Chọn B.

Câu 6

A.

\[\frac{{3\pi }}{4}\].

B.

\[ - \frac{\pi }{4}\].

C.

\[\frac{\pi }{4}\].

D.

\[ - \frac{{3\pi }}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP