Câu hỏi:

11/09/2025 34 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\).

(a) Công thức cho số hạng tổng quát \({u_n} = 1 + \frac{n}{3}\).

(b) 5 là số hạng thứ 8 của cấp số cộng đã cho.

(c)\(\frac{{15}}{4}\) một số hạng của cấp số cộng đã cho.

(d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 1\).

b) Đúng. Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.

c) Sai. Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.

d) Sai. Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số có tập xác định \(D = \mathbb{R}\).

Ta có \(y = 5 + 4\sin 2x\cos 2x = 5 + 2\sin 4x\).

Do \( - 1 \le \sin 4x \le 1 \Leftrightarrow - 2 \le 2\sin 4x \le 2 \Leftrightarrow 3 \le 5 + 2\sin 4x \le 7 \Leftrightarrow 3 \le y \le 7\).

Suy ra tập giá trị của hàm số là \(T = \left[ {3\,;7} \right]\).

Vậy \(a + b = 3 + 7 = 10\).

Đáp án: 10.

Lời giải

Các hàm số: \(y = \sin 2x\), \(y = \tan x\), \(y = \cot x\) tuần hoàn với chu kỳ \(T = \pi \). Chọn B.

Câu 6

A.

\[\frac{{3\pi }}{4}\].

B.

\[ - \frac{\pi }{4}\].

C.

\[\frac{\pi }{4}\].

D.

\[ - \frac{{3\pi }}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP