Hai bạn Oanh, Cường lần lượt đứng tại vị trí \(O,\,C\) của một tòa nhà. Hai bạn An, Bình lần lượt đứng trên mặt đất tại vị trí A, B mà tại đó nhìn các điểm C, O các góc lần lượt bằng và so với phương nằm ngang. Gọi H là hình chiếu của O trên đường thẳng AB, giả sử O, C, H thẳng hàng và biết khoảng cách giữa hai điểm A, B là \(l = 20\,\,{\rm{m}}\) (Hình vẽ dưới). Gọi h = OC là khoảng cách giữa vị trí đứng của Oanh và Cường. Tìm h (làm tròn kết quả đến hàng phần trăm).

Quảng cáo
Trả lời:

Có .
Áp dụng định lí sin vào , ta có: .
Xét vuông tại H, ta có: .
Có .
Áp dụng định lí sin vào , ta có: .
Xét vuông tại H, ta có: .
Vậy (m).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số quyển tập và y là số cây bút mà bạn Lan mua \(\left( {x,y \in \mathbb{N}} \right)\).
Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8\,000x + 6\,000y \le 150\,000\).
Nếu bạn Lan đã mua 10 cây bút thì \(8\,000x + 6\,000 \cdot 10 \le 150\,000 \Leftrightarrow x \le 11,25\).
Vì \(x \in \mathbb{N}\) nên số quyển tập tối đa bạn Lan mua được là 11 quyển.
Đáp án: 11.
Lời giải
a) Đúng. Mệnh đề đảo của mệnh đề “\(P \Rightarrow Q\)” là mệnh đề “\(Q \Rightarrow P\)” và được phát biểu là: “Nếu \(ABCD\) là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác \(ABCD\) là hình vuông”.
b) Sai. Hai mệnh đề \(P\) và \(Q\) tương đương với nhau.
c) Sai. Mệnh đề \(P \Leftrightarrow Q\) là mệnh đề đúng.
d) Đúng. Vì \(P\) và \(Q\) tương đương nên \(P\) là điều kiện cần và đủ để có \(Q\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.