Câu hỏi:

16/09/2025 7 Lưu

Điểm \(M\left( {2023;1} \right)\) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thay \(x = 2023;y = 1\)vào các bất phương trình của từng phương án ta thấy phương án D thỏa. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đường thẳng \(x - y = 1\) đi qua hai điểm \(\left( {0; - 1} \right),\,\,\left( {1;0} \right)\).

Điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình \(x - y \le 1\).

Vậy bất phương trình có miền nghiệm như hình vẽ là \(x - y \le 1\). Chọn B.

Câu 2

Lời giải

Ta có \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\tan ^2}\alpha  = \frac{1}{{{{\left( { - \frac{2}{3}} \right)}^2}}} - 1 = \frac{9}{4} - 1 = \frac{5}{4}\).

Vậy \(E = \frac{{\cot \alpha  + 3\tan \alpha }}{{2\cot \alpha  + \tan \alpha }} = \frac{{\left( {\cot \alpha  + 3\tan \alpha } \right)\tan \alpha }}{{\left( {2\cot \alpha  + \tan \alpha } \right)\tan \alpha }} = \frac{{1 + 3{{\tan }^2}\alpha }}{{2 + {{\tan }^2}\alpha }} = \frac{{1 + 3 \cdot \frac{5}{4}}}{{2 + \frac{5}{4}}} = \frac{{19}}{{13}}\). Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP