Câu hỏi:

16/09/2025 6 Lưu

Cho hai tập \(A = \left\{ {x \in \mathbb{R}|x + 2 \ge 0} \right\}\) và \(B = \left\{ {x \in \mathbb{R}|2x - 1 < 0} \right\}\).

a) \(A = \left[ { - 2; + \infty } \right)\), \(B = \left( { - \infty ;\frac{1}{2}} \right)\).

b) Biểu diễn trên trục số tập hợp \(A\) là

Cho hai tập A = {x thuộc R| x+ 2 lớn hơn bằng 0} và B = {x thuộc R| 2x-1<0}.  (ảnh 1)

c) \(A \cap B = \left( { - \infty ; + \infty } \right)\).

d) Số phần tử nguyên của tập hợp \(A \cap B\) là 5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \[x + 2 \ge 0 \Leftrightarrow x \ge  - 2\]. Do đó \(A = \left[ { - 2; + \infty } \right)\).

Ta có \(2x - 1 < 0 \Leftrightarrow x < \frac{1}{2}\). Do đó \(B = \left( { - \infty ;\frac{1}{2}} \right)\).

b) Đúng.

c) Sai. Vì \(A \cap B = \left[ { - 2;\frac{1}{2}} \right)\).

d) Sai. Ta có \(A \cap B = \left[ { - 2;\frac{1}{2}} \right)\) nên \(A \cap B\) có các phần tử nguyên là \( - 2; - 1;0\). Do đó số phần tử nguyên của tập hợp\(A \cap B\) là 3. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đường thẳng \(x - y = 1\) đi qua hai điểm \(\left( {0; - 1} \right),\,\,\left( {1;0} \right)\).

Điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình \(x - y \le 1\).

Vậy bất phương trình có miền nghiệm như hình vẽ là \(x - y \le 1\). Chọn B.

Câu 2

Lời giải

Ta có \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\tan ^2}\alpha  = \frac{1}{{{{\left( { - \frac{2}{3}} \right)}^2}}} - 1 = \frac{9}{4} - 1 = \frac{5}{4}\).

Vậy \(E = \frac{{\cot \alpha  + 3\tan \alpha }}{{2\cot \alpha  + \tan \alpha }} = \frac{{\left( {\cot \alpha  + 3\tan \alpha } \right)\tan \alpha }}{{\left( {2\cot \alpha  + \tan \alpha } \right)\tan \alpha }} = \frac{{1 + 3{{\tan }^2}\alpha }}{{2 + {{\tan }^2}\alpha }} = \frac{{1 + 3 \cdot \frac{5}{4}}}{{2 + \frac{5}{4}}} = \frac{{19}}{{13}}\). Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP