Cho \(\Delta OEF\) có \(OM\;\left( {M \in EF} \right)\) là tia phân giác của tam giác. Biết rằng: \(\frac{{OE}}{{OF}} = \frac{4}{3}.\) Khi đó:
Cho \(\Delta OEF\) có \(OM\;\left( {M \in EF} \right)\) là tia phân giác của tam giác. Biết rằng: \(\frac{{OE}}{{OF}} = \frac{4}{3}.\) Khi đó:
A. \(EM = \frac{4}{3}MF.\)
Quảng cáo
Trả lời:

Đáp án đúng là: A

Vì \(OM\) là tia phân giác của \(\widehat {EOF}\) trong \(\Delta OEF\) nên \(\frac{{EM}}{{MF}} = \frac{{OE}}{{OF}} = \frac{4}{3}.\) Suy ra \(EM = \frac{4}{3}MF.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)
Lời giải
Đáp án đúng là: C\(AD\)

Vì là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\) Suy ra: \(DC = \frac{{AC \cdot BD}}{{AB}} = \frac{{16 \cdot 8}}{{10}} = 12,8\;\left( {{\rm{cm}}} \right).\)
Do đó, \(BC = CD + DB = 12,8 + 8 = 20,8\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)
Câu 2
A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)
Lời giải
Đáp án đúng là: D

có \(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)
Vì \(D\) là giao điểm của hai đường phân giác \(AE\) và \(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)\(\Delta ABC\)
Câu 3
A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{2}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.