Câu hỏi:

22/09/2025 39 Lưu

Cho \(\Delta ABC\) cân tại \(B.\) Kẻ các đường phân giác \(AM\;\left( {M \in BC} \right),\;CN\;\left( {N \in AB} \right).\)

         a) \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)

         b) \(\frac{{BN}}{{AN}} = \frac{{AC}}{{BC}}.\)

         c) \(MN\;{\rm{//}}\;AC.\)

         d) Tứ giác \(MNAC\) là hình thang cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
         a) \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)           b) \(\frac{{BN}}{{AN}} = \frac{{AC}}{{BC}}.\)           c) \(MN\;{\rm{//}}\;AC.\)           d) Tứ giác \(MNAC\) là hình thang cân. (ảnh 1)

a) Đúng.

\(AM\) là tia phân giác của \(\widehat {BAC}\) trong \(\Delta ABC\) nên  \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)

b) Sai.

\(CN\) là tia phân giác của \(\widehat {BCA}\) trong \(\Delta ABC\) nên \(\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}}.\)

c) Đúng.

\(\Delta ABC\) cân tại \(B\) nên \(AB = BC.\)

\(AB = BC,\;\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}},\;\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}\) nên \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}.\)

\(\Delta ABC\) có: \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}\) (định lí Thalès đảo) nên \(MN\;{\rm{//}}\;AC.\)

d) Đúng.

\(MN\;{\rm{//}}\;AC\) nên tứ giác \(MNAC\) là hình thang. Lại có: \(\widehat {NAC} = \widehat {MCA}\) (do \(\Delta ABC\) cân tại \(B\)).

Do đó, tứ giác \(MNAC\) là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)

B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)   
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C\(AD\)

Cho \(\Delta ABC\) có \(AB = 10\;{\rm{cm}},\;AC = 16\;{\rm{cm}}.\) Đường phân giác của góc \(A\) cắt \(BC\) tại \(D.\) Biết rằng \(BD = 8\;{\rm{cm}}{\rm{.}}\) Tính độ dài cạnh \(BC.\) (ảnh 1)

Vì  là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\) Suy ra: \(DC = \frac{{AC \cdot BD}}{{AB}} = \frac{{16 \cdot 8}}{{10}} = 12,8\;\left( {{\rm{cm}}} \right).\)

Do đó, \(BC = CD + DB = 12,8 + 8 = 20,8\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)  

B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)  
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)     
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Đáp án đúng là: A

Cho tam giác \(ABC\) có \(AD\;\left( {D \in BC} \right)\) là đường phân giác của tam giác đó. Khi đó: (ảnh 1)

Vì \(AD\) là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)

Câu 3

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)

B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\) 
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\) 
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP