Câu hỏi:

22/09/2025 60 Lưu

Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)

         a) \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)

         b) \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)

         c) \(\frac{{OD}}{{ED}} > \frac{{OC}}{{FC}}.\)

         d) \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
         a) \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)           b) \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)           c) \(\frac{{OD}}{{ED}} > \frac{{OC}}{{FC}}.\)           d) \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\) (ảnh 1)

a) Đúng.

\(BF\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)

b) Đúng.

 \(AE\) là tia phân giác của \(\widehat {DAB}\) trong \(\Delta ABD\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}.\)

Ta có: \(BC = AD\) (do tứ giác \(ABCD\) là hình bình hành), \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}},\;\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) nên \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)

c) Sai.

\(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}\) nên \(\frac{{BE + DE}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}.\) Suy ra \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\) hay \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}.\)

d) Đúng.

\(\Delta DOC\) có: \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\) nên \(EF\;{\rm{//}}\;DC\) (Định lí Thalès đảo).

\(DC\;{\rm{//}}\;AB\) (do tứ giác \(ABCD\) là hình bình hành) nên \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2,3\)

Cho \(\Delta ABC\) có \(AB = 5\;{\rm{cm}},\;AC = 6\;{\rm{cm}},\;BC = 8\;{\rm{cm}}.\) Tia phân giác góc \(B\) cắt \(AC\) tại \(E.\) Độ dài đoạn thẳng \(AE\) bằng bao nhiêu \({\rm{cm?}}\) (ảnh 1)

Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)

Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án: \(40\)

Cho \(\Delta ABC\) có \(AB = AC = 12\;{\rm{cm}}{\rm{.}}\) Tia phân giác của góc \(B\) cắt đường cao \(AH\;\left( {H \in BC} \right)\) của \(\Delta ABC\) tại \(I.\) Biết rằng \(\frac{{AI}}{{AH}} = \frac{3}{5}.\) Tính chu vi \(\Delta ABC.\) (ảnh 1)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\)  nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)

Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\)  nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)

Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)

Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)

Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.

Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)

Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)

Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)

B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)   
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {DAC} = 60^\circ .\)  

B. \(\widehat {DAC} = 40^\circ .\)
C. \(\widehat {DAC} = 50^\circ .\) 
D. \(\widehat {DAC} = 45^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP