Câu hỏi:

22/09/2025 33 Lưu

Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)

         a) \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)

         b) \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)

         c) \(\frac{{OD}}{{ED}} > \frac{{OC}}{{FC}}.\)

         d) \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
         a) \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)           b) \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)           c) \(\frac{{OD}}{{ED}} > \frac{{OC}}{{FC}}.\)           d) \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\) (ảnh 1)

a) Đúng.

\(BF\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)

b) Đúng.

 \(AE\) là tia phân giác của \(\widehat {DAB}\) trong \(\Delta ABD\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}.\)

Ta có: \(BC = AD\) (do tứ giác \(ABCD\) là hình bình hành), \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}},\;\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) nên \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)

c) Sai.

\(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}\) nên \(\frac{{BE + DE}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}.\) Suy ra \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\) hay \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}.\)

d) Đúng.

\(\Delta DOC\) có: \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\) nên \(EF\;{\rm{//}}\;DC\) (Định lí Thalès đảo).

\(DC\;{\rm{//}}\;AB\) (do tứ giác \(ABCD\) là hình bình hành) nên \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)

B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)   
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C\(AD\)

Cho \(\Delta ABC\) có \(AB = 10\;{\rm{cm}},\;AC = 16\;{\rm{cm}}.\) Đường phân giác của góc \(A\) cắt \(BC\) tại \(D.\) Biết rằng \(BD = 8\;{\rm{cm}}{\rm{.}}\) Tính độ dài cạnh \(BC.\) (ảnh 1)

Vì  là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\) Suy ra: \(DC = \frac{{AC \cdot BD}}{{AB}} = \frac{{16 \cdot 8}}{{10}} = 12,8\;\left( {{\rm{cm}}} \right).\)

Do đó, \(BC = CD + DB = 12,8 + 8 = 20,8\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)  

B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)  
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)     
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Đáp án đúng là: A

Cho tam giác \(ABC\) có \(AD\;\left( {D \in BC} \right)\) là đường phân giác của tam giác đó. Khi đó: (ảnh 1)

Vì \(AD\) là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)

Câu 3

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)

B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\) 
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\) 
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP