Câu hỏi:

22/09/2025 31 Lưu

Cho \(\Delta ABC\) có chu vi bằng \(148\;{\rm{cm}}{\rm{.}}\) Đường phân giác góc \(A\) cắt \(BC\) tại \(D\) sao cho \(\frac{{BD}}{{BC}} = \frac{2}{5}.\) Đường phân giác góc \(C\) cắt \(AB\) tại \(E\) sao cho \(\frac{{AE}}{{AB}} = \frac{5}{9}.\) Độ dài cạnh \(BC\) bằng bao nhiêu

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(48\)

Độ dài cạnh \(BC\) bằng bao nhiêu (ảnh 1)

Vì \(\frac{{BD}}{{BC}} = \frac{2}{5}\) nên \(\frac{{BD}}{{DC}} = \frac{2}{3}.\) Vì \(\frac{{AE}}{{AB}} = \frac{5}{9}\)  nên \(\frac{{AE}}{{BE}} = \frac{5}{4}.\)

Vì chu vi \(\Delta ABC\) bằng \(148\;{\rm{cm}}\) nên \(AB + AC + BC = 148.\)

Vì \(AD\) là tia phân giác của \(\widehat {CAB}\) trong \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} = \frac{2}{3}.\) Suy ra \[\frac{{AB}}{2} = \frac{{AC}}{3}.\]

Vì \(CE\) là tia phân giác của \(\widehat {ACB}\) trong \(\Delta ABC\) nên \(\frac{{CA}}{{CB}} = \frac{{AE}}{{EB}} = \frac{5}{4}.\) Suy ra \(\frac{{AC}}{5} = \frac{{BC}}{4}.\)

Vì \[\frac{{AB}}{2} = \frac{{AC}}{3},\;\frac{{AC}}{5} = \frac{{BC}}{4}\] nên \(\frac{{AB}}{{10}} = \frac{{AC}}{{15}} = \frac{{BC}}{{12}}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{{10}} = \frac{{AC}}{{15}} = \frac{{BC}}{{12}} = \frac{{AB + AC + BC}}{{10 + 15 + 12}} = \frac{{148}}{{37}} = 4.\)

Do đó, \(BC = 4 \cdot 12 = 48\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 48\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)

B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)   
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C\(AD\)

Cho \(\Delta ABC\) có \(AB = 10\;{\rm{cm}},\;AC = 16\;{\rm{cm}}.\) Đường phân giác của góc \(A\) cắt \(BC\) tại \(D.\) Biết rằng \(BD = 8\;{\rm{cm}}{\rm{.}}\) Tính độ dài cạnh \(BC.\) (ảnh 1)

Vì  là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\) Suy ra: \(DC = \frac{{AC \cdot BD}}{{AB}} = \frac{{16 \cdot 8}}{{10}} = 12,8\;\left( {{\rm{cm}}} \right).\)

Do đó, \(BC = CD + DB = 12,8 + 8 = 20,8\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)

B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\) 
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\) 
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Đáp án đúng là: D

Cho \(\Delta ABC\) có \(AE\;\left( {E \in BC} \right)\) là đường phân giác của tam giác. Gọi \(I\) là điểm nằm trên cạnh \(AB\) sao cho \(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}.\) Gọi \(D\) là giao điểm của \(AE\) và \(CI.\) Khi đó:  (ảnh 1)

 có \(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)

Vì \(D\) là giao điểm của hai đường phân giác \(AE\) và \(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)\(\Delta ABC\)

Câu 3

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)  

B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)  
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)     
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP