Câu hỏi:

18/09/2025 6 Lưu

(0,5 điểm) Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí A. Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu, biết rằng khoảng cách từ cọc đến bờ ngang là \[5{\rm{ m}}\] và khoảng cách từ cọc đến bờ dọc là \[12{\rm{ m}}.\]
Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu (ảnh 2)

Đặt tên các điểm như hình vẽ. Đặt \(CJ = x\,\,\left( {x > 0} \right).\)

\[AJ\,\,{\rm{//}}\,\,KB\] (cùng vuông góc với \(CI\)) nên hai tam giác \(AJC\)\(BKA\) là hai tam giác đồng dạng nên \(\frac{{JC}}{{KA}} = \frac{{JA}}{{KB}}\) nên \(\frac{x}{5} = \frac{{12}}{{KB}}\), suy ra \(KB = \frac{{60}}{x}\).

Diện tích khu nuôi cá là:

\(S\left( x \right) = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = \frac{1}{2}\left( {60 + 12x + \frac{{300}}{x} + 60} \right) = \frac{{150}}{x} + 6x + 60\).

Áp dụng bất đẳng thức Cauchy, ta có:

\[S\left( x \right) = \frac{{150}}{x} + 6x + 60 \ge 2\sqrt {\frac{{150}}{x} \cdot 6x} + 60 = 2\sqrt {900} + 60 = 120.\]

Dấu  xảy ra khi \[\frac{{150}}{x} = 6x\] nên \({x^2} = 25\), suy ra \(x = 5\,\,{\rm{m}}\).

Vậy diện tích nhỏ nhất có thể giăng là \(120\,\,{{\rm{m}}^{\rm{2}}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Theo đề bài, nếu xe có chiều rộng lớn hơn \[3,2\,\,{\rm{m}}\] thì không được phép lưu thông nghĩa là xe đó (không phải xe cơ giới và thô sơ) có chiều rộng nhỏ hơn hoặc bằng \[3,2\,\,{\rm{m}}\] được phép lưu thông.

Do đó, nếu một xe tải đi trên đường đó thì \[a \le 3,2.\]

Lời giải

Hướng dẫn giải

Đáp án: 3.

Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).

Với MTCT phù hợp, ta bấm lần lượt các phím:

MODE  5    1      1    =      1    =    1    =  3  =    1    =  7  =  = 

Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím màn hình cho kết quả \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)

Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)

Do đó \[x + y = 2 + 1 = 3.\]

Câu 4

A. \[\left( {2\,;\,\, - 3} \right).\]                          
B. \[\left( {1\,;\,\,1} \right).\]                       
C. \[\left( {1\,;\,\, - 2} \right).\]                          
D. \[\left( {12\,;\,\, - 1} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\cot \alpha \).        
B. \[\cos \alpha \].        
C. \(\sin \alpha \).       
D. \(\tan \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 14.                            
B. \[14,6.\]                    
C. \[14,5.\]                    
D. \[14,9.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP