Câu hỏi:

18/09/2025 175 Lưu

Biết \(0^\circ < \alpha < 90^\circ ,\) tính giá trị biểu thức \[A = \frac{{\sin \alpha + 3\cos \left( {90^\circ - \alpha } \right)}}{{\sin \alpha - 2\cos \left( {90^\circ - \alpha } \right)}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \[ - {\bf{4}}\].

Theo tính chất tỉ số lượng giác hai góc nhọn phụ nhau, ta có \[\sin \alpha = \cos \left( {90^\circ - \alpha } \right).\]

Khi đó, ta có \[A = \frac{{\sin \alpha + 3\cos \left( {90^\circ - \alpha } \right)}}{{\sin \alpha - 2\cos \left( {90^\circ - \alpha } \right)}} = \frac{{\sin \alpha + 3\sin \alpha }}{{\sin \alpha - 2\sin \alpha }} = \frac{{4\sin \alpha }}{{ - \sin \alpha }} = - \,4.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \[ - {\bf{3}}\].

Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]

\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]

\[3x < - 7\]

\[x < - \frac{7}{3}\]

Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]

Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)

Câu 2

A. \(5\).                         
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Giải phương trình:

\(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\)

\[\frac{1}{3}x - 3 = 0\] hoặc \[x + 8 = 0\]

\[\frac{1}{3}x = 3\] hoặc \(x = - 8\)

\(x = 9\) hoặc \(x = - 8\).

Do đó phương trình đã cho có hai nghiệm là \(x = 9\)\(x = - 8\).

Vậy tổng các nghiệm của phương trình đó là: \(9 + \left( { - 8} \right) = 1.\)

Câu 4

A. \[\left( {2\,;\,\, - 3} \right).\]                          
B. \[\left( {1\,;\,\,1} \right).\]                       
C. \[\left( {1\,;\,\, - 2} \right).\]                          
D. \[\left( {12\,;\,\, - 1} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP