(1,5 điểm)
1) Cho tam giác \(ABC\) có \(BC = 16\,{\rm{cm}},\,\,\widehat {ABC} = 45^\circ ,\,\,\widehat {ACB} = 30^\circ .\) Gọi \(N\) là chân đường vuông góc kẻ từ \(A\) đến cạnh \(BC.\) Tính độ dài cạnh \(AN\) (làm tròn kết quả đến chữ số thập phân thứ hai).
2) Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là \(20^\circ \) và cần đặt cao hơn mặt đất là \(2,5\,\,{\rm{m}}.\) Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường \(2\,\,{\rm{m}}\) (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất).

(1,5 điểm)
1) Cho tam giác \(ABC\) có \(BC = 16\,{\rm{cm}},\,\,\widehat {ABC} = 45^\circ ,\,\,\widehat {ACB} = 30^\circ .\) Gọi \(N\) là chân đường vuông góc kẻ từ \(A\) đến cạnh \(BC.\) Tính độ dài cạnh \(AN\) (làm tròn kết quả đến chữ số thập phân thứ hai).
2) Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là \(20^\circ \) và cần đặt cao hơn mặt đất là \(2,5\,\,{\rm{m}}.\) Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường \(2\,\,{\rm{m}}\) (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất).

Quảng cáo
Trả lời:
Hướng dẫn giải
|
1) Từ \(B\) kẻ \(BK \bot AC\) tại \(K.\) Xét tam giác \(BCK\) vuông tại \(K\) nên \(BK = BC \cdot \sin C = 16 \cdot \sin 30^\circ = 8\,\,\left( {{\rm{cm}}} \right)\) Xét tam giác \(ABC\) có \(\widehat {BAK}\) là góc ngoài nên \(\widehat {BAK} = \widehat {ABC} + \widehat {ACB} = 45^\circ + 30^\circ = 75^\circ .\) Tam giác \(ABK\) vuông tại \(K\) nên \(\widehat {BAK} + \widehat {ABK} = 90^\circ \). |
|
Do đó \(\widehat {ABK} = 90^\circ - \widehat {BAK} = 90^\circ - 75^\circ = 15^\circ .\)
Ta có \(\cos \widehat {ABK} = \frac{{BK}}{{AB}}\) suy ra \(AB = \frac{{BK}}{{\cos \widehat {ABK}}} = \frac{8}{{\cos 15^\circ }} \approx 8,28\,\,\left( {{\rm{cm}}} \right)\)
Tam giác \(ANB\) vuông cân tại \(N\) nên \(\widehat {ABN} = \widehat {BAN} = 45^\circ \); \(\sin \widehat {ABN} = \frac{{AN}}{{AB}}\).
Suy ra \(AN = AB \cdot \sin \widehat {ABK} \approx 8,28 \cdot \sin 45^\circ \approx 5,85\,\,\left( {{\rm{cm}}} \right)\).
Vậy \(AN \approx 5,85\,\,{\rm{cm}}\,.\)
|
2) Xét \(\Delta ABC\) vuông tại \(B\), ta có \(\tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{2}{{2,5}} = 0,8\) nên \(\widehat {BAC} \approx 38,7^\circ .\) Ta có \(\widehat {BAD} = \widehat {BAC} + \widehat {CAD} \approx 38,7^\circ + 20^\circ = 58,7^\circ .\) Xét \(\Delta ABD\) vuông tại \(B\), ta có \(BD = AB \cdot \tan \widehat {BAD} \approx 2,5 \cdot \tan 58,7^\circ \approx 4,1\,\,\left( {\rm{m}} \right).\) |
|
Do đó \(CD = BD - BC \approx 4,1 - 2 = 2,1\,\,\left( {\rm{m}} \right).\)
Vậy độ dài vùng được chiếu sáng trên mặt đất khoảng \(2,1\) mét.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 4.
Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\)
\(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\)
\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\)
\({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\)
\({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\)
\({x^2} - 8x + 16 = 0\)
\({\left( {x - 4} \right)^2} = 0\)
\(x - 4 = 0\)
\(x = 4\) (thỏa mãn).
Vậy nghiệm của phương trình đã cho là \(x = 4\).
Lời giải
Hướng dẫn giải
Theo bài, hiệu giữa nucleotide loại T với loại nucleotide không bổ sung với nó là \(300\) nucleotide nên ta có phương trình: \(T - G = 300\). (1)
Theo nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và theo bài, gen B có \(3\,\,600\) liên kết hydrogen nên ta có phương trình \(2T + 3G = 3\,\,600\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}T - G = 300\\2T + 3G = 3\,\,600\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 3, ta được hệ \(\left\{ \begin{array}{l}3T - 3G = 900\\2T + 3G = 3\,\,600\end{array} \right.\)
Cộng từng vế hai phương trình của hệ ta được: \(5T = 4\,500,\) suy ra \(T = 900\).
Thay \(T = 900\) vào phương trình \(T - G = 300\), ta được: \(900 - G = 300,\) suy ra \(G = 600.\)
Vậy số nucleotide từng loại gen B là: \(G = C = 600\) và \(A = T = 900\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


