Câu hỏi:

22/09/2025 49 Lưu

B. TỰ LUẬN (3,0 điểm)

(1,0 điểm) Giải bài toán sau bằng cách lập hệ phương trình:

Đại hội Thể thao Đông Nam Á – SEA Games (South East Asian Games) là sự kiện thể thao được tổ chức 2 năm 1 lần với sự tham gia của các vận động viên trong khu vực Đông Nam Á. Việt Nam là đội chủ nhà của SEA Games 31 diễn ra từ ngày 12/5/2022 đến ngày 23/5/2022. Ở môn bóng đá nam, một bảng đấu có 5 đội A, B, C, D, E thi đấu theo thể thức vòng tròn một lượt (mỗi đội thi đấu đúng một trận với các đội còn lại).

Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)? (ảnh 1) 

Trong mỗi trận đấu, đội thắng được 3 điểm, đội hòa được 1 điểm và đội thua được 0 điểm. Khi kết thúc bảng đấu, các đội A, B, C, D, E lần lượt có điểm số là \(10\,;\,\,9\,;\,\,6\,;\,\,4\,;\,\,0.\) Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(x\) là số trận thắng – thua và \(y\) là số trận hòa \[\left( {x,{\rm{ }}y \in \mathbb{N}*} \right)\].

Nếu có 5 đội tham gia thi đấu, mỗi đội phải đấu với 4 đội còn lại nên với 5 đội tham gia thì có \(5 \cdot 4 = 20\) (trận đấu). Nhưng mỗi trận đấy có 2 đội tham gia nên tổng số trận đấu khi có 5 đội tham gia là \(\frac{{5 \cdot 4}}{2} = 10\) (trận đấu).

Vì có 10 trận đấu nên \(x + y = 10\) \[\left( 1 \right)\]

Mặt khác, tổng số điểm các đội là \(10 + 9 + 6 + 4 + 0 = 29\) (điểm).

Mỗi trận thắng – thua có tổng số điểm là 3 và mỗi trận hòa có tổng số có tổng số điểm là 2 nên ta có phương trình \(3x + 2y = 29\) \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 10\\3x + 2y = 29\end{array} \right.\).

Từ phương trình thứ hai ta có \(x + y = 10\) suy ra \(x = 10 - y\). Thế vào phương trình thứ nhất, ta được:

\(3\left( {10 - y} \right) + 2y = 29\), suy ra \(30 - 3y + 2y = 29\) hay \(y = 1\) (thỏa mãn).

Từ đó \(x = 10 - y = 10 - 1 = 9\) (thỏa mãn).

Mỗi đội có 4 trận đấu với các đội còn lại mà đội A có 10 điểm tức đội A thắng 3 trận hòa 1 trận.

Đội B có 9 điểm tức thắng 3 trận thua 1 trận.

Đội C có 6 điểm tức thắng 2 trận thua 2 trận.

Đội D có 4 điểm thắng 1 trận hòa 1 trận.

Đội E không có điểm tức là thua hết 4 trận.

Vậy trận hòa là của đội A và đội D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = 2x.\]                 
B. \[y = - 2x.\]              
C. \[y = 2x + 1.\]           
D. \[y = - 2x + 1.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Nhận thấy đường thẳng \[d\] đi qua các điểm có tọa độ \[\left( {0\,;\,\,0} \right)\]\[\left( {1\,;\,\,2} \right).\]

Do đó, đường thẳng \[d\] biểu diễn nghiệm của phương trình \[y = 2x.\]

Câu 2

Giá trị của \(a\)\(b\) để cặp số \[\left( { - 2;\,\,3} \right)\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ax + y = 5}\\{3x + by = 0}\end{array}} \right.\)

A. \(\left( {a;\,\,b} \right) = \left( { - 3;\,\,3} \right)\).                        
B. \(\left( {a;\,\,b} \right) = \left( { - 2;\,\,1} \right)\).                        
C. \(\left( {a;\,\,b} \right) = \left( {2;\,\, - 4} \right)\).                        
D. \(\left( {a;\,\,b} \right) = \left( { - 1;\,\,2} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình, ta thay \(x = - 2\)\(y = 3\) vào hệ phương trình, ta được: \(\left\{ {\begin{array}{*{20}{l}}{a \cdot \left( { - 2} \right) + 3 = 5}\\{3 \cdot \left( { - 2} \right) + b \cdot 3 = 0}\end{array}} \right.\)

Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{ - 2a = 2}\\{ - 6 + 3b = 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 2.}\end{array}} \right.\)

Vậy, để cặp số \(\left( { - 2;\,\,3} \right)\) là nghiệm của hệ phương trình thì \(a = - 1\)\(b = 2\).

Câu 5

A. \(\left( {x;\,\, - 3x - 6} \right)\) với \(x \in \mathbb{R}\) tùy ý.          
B. \(\left( { - 3y + 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
C. \[\left( {x;\,\, - 3x + 6} \right)\] với \[x \in \mathbb{R}\] tùy ý.          
D. \(\left( { - 3y - 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP