Câu hỏi:

18/09/2025 29 Lưu

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 10\,\,{\rm{cm}},\,\,\widehat C = 40^\circ .\) Cạnh \(BC\) có độ dài gần nhất với kết quả nào dưới đây?

A. \(12,45\)cm.             
B. \(15,56\,\,{\rm{cm}}{\rm{.}}\)                        
C. \(6,43\,\,{\rm{cm}}{\rm{.}}\)                               
D. \(8\)cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(ABC\) vuông tại \(A\) có \[\widehat C = 40^\circ \], ta có: \[AB = BC \cdot \sin {\rm{ }}C.\]

Suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{{10}}{{\sin 40^\circ }} \approx 15,56\,\,\left( {{\rm{cm}}} \right).\)

Vậy \[BC\] có độ dài gần nhất với đáp án B.

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 10\,\,{\rm{cm}},\,\,\widehat C = 40^\circ .\) Cạnh \(BC\) có độ dài gần nhất với kết quả nào dưới đây? A. \(12,45\)cm.	B. \(15,56\,\,{\rm{cm}}{\rm{.}}\)	C. \(6,43\,\,{\rm{cm}}{\rm{.}}\)	D. \(8\)cm. (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điểm trung bình của 40 học sinh là: \(\frac{{300}}{4} = 7,5\) (điểm).

Giả sử có một học sinh có điểm lớn hơn 30. Gọi điểm của học sinh đó là \[{a_k} > 30.\]

Điểm của các học sinh còn lại là \[{a_1},\,\,{a_2},\,\, \ldots ,\,\,{a_{k - 1}},\,\,{a_{k + 1}}\,\,,\,\, \ldots ,\,\,{a_{40}}.\]

Tổng điểm của các học sinh còn lại là: \[S = 300 - {a_k}.\]

\[{a_k} > 30\] thì \[S < 300 - 30 = 270.\]

Số lượng học sinh còn lại là 39 nên trung bình điểm của các học sinh còn lại là:

\[M = \frac{S}{{39}} < \frac{{270}}{{39}} \approx 6,92.\]

Theo giả thiết, không có học sinh nào có điểm dưới 10.

Do đó, tổng điểm tối thiểu của 39 học sinh còn lại là: \[S\, \ge 10 \cdot 39 = 390.\]

Mà \[S < 270\] dẫn đến mâu thuẫn.

Vậy không có học sinh nào có điểm lớn hơn 30.

Câu 2

A. \(x\left( {x - 1} \right) = 0\).                          
B. \(x\left( {x + 1} \right) = 0\).                             
C. \(x = 0\).                   
D. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Dễ dàng thấy rằng:

Giá trị \(x = 0\) không là nghiệm của phương trình \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Giá trị \(x = 0\)\(x = - 1\) là nghiệm của phương trình \(x\left( {x + 1} \right) = 0\).

Giá trị \(x = - 1\) không là nghiệm của phương trình \(x = 0\) và phương trình \(x\left( {x - 1} \right) = 0\)

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1,408.\)                  
B. \(1,409.\)                  
C. \(1,407.\)                  
D. \(1,440.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[a = 2,{\rm{ }}b = 5,{\rm{ }}c = 7.\]              
B. \[a = - 5,{\rm{ }}b = 2,{\rm{ }}c = 7.\]
C. \[a = 5,{\rm{ }}b = 2,{\rm{ }}c = 7.\]              
D. \[a = 2,{\rm{ }}b = - 5,{\rm{ }}c = 7.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP