Câu hỏi:

18/09/2025 88 Lưu

Cho tam giác \(ABC\)\(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\)\(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến độ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 23.

Xét \(\Delta ABC\)\(A{B^2} + B{C^2} = {5^2} + {12^2} = 169\);

\(C{A^2} = {13^2} = 169.\)

Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến độ). (ảnh 1)

Do đó \(A{B^2} + B{C^2} = C{A^2},\) nên theo định lí Pythagore đảo ta có \(\Delta ABC\) vuông tại \(B.\)

Khi đó, ta có: \[\sin C = \frac{{AB}}{{AC}} = \frac{5}{{13}}.\]

Sử dụng MTCT, ta bấm lần lượt các phím:

SHIFT  sin  5    :    13  =  °  '  ''

Trên màn hình cho kết quả \(22^\circ 37'11.51'',\) làm tròn đến phút ta được \(23^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điểm trung bình của 40 học sinh là: \(\frac{{300}}{4} = 7,5\) (điểm).

Giả sử có một học sinh có điểm lớn hơn 30. Gọi điểm của học sinh đó là \[{a_k} > 30.\]

Điểm của các học sinh còn lại là \[{a_1},\,\,{a_2},\,\, \ldots ,\,\,{a_{k - 1}},\,\,{a_{k + 1}}\,\,,\,\, \ldots ,\,\,{a_{40}}.\]

Tổng điểm của các học sinh còn lại là: \[S = 300 - {a_k}.\]

\[{a_k} > 30\] thì \[S < 300 - 30 = 270.\]

Số lượng học sinh còn lại là 39 nên trung bình điểm của các học sinh còn lại là:

\[M = \frac{S}{{39}} < \frac{{270}}{{39}} \approx 6,92.\]

Theo giả thiết, không có học sinh nào có điểm dưới 10.

Do đó, tổng điểm tối thiểu của 39 học sinh còn lại là: \[S\, \ge 10 \cdot 39 = 390.\]

Mà \[S < 270\] dẫn đến mâu thuẫn.

Vậy không có học sinh nào có điểm lớn hơn 30.

Lời giải

Hướng dẫn giải

Đáp án: 0.

Để hai biểu thức đã cho có cùng một giá trị thì \(A = B\), tức là \(\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\).

Điều kiện: \(x \ne \frac{1}{3};\,\,x \ne - \frac{1}{3}.\)

Giải phương trình:

\(\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\)

\(\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\)

\(\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\)

\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\]

\(9x - 3 - 6x - 2 = x - 5\)

\(2x = 0\)

\(x = 0\) (thỏa mãn).

Vậy \(x = 0\) thỏa mãn yêu cầu đề bài.

Câu 3

A. \[ - 2x + 3y = 5.\]     
B. \[2x + 3y = 5.\]         
C. \[3x--2y = 5.\]          
D. \[2x--3y = 5.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

 Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:

a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)

b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).

c) Phương trình \(0x = 1\)số nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5\).                         
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho bất phương trình \(m\left( {5x - 2} \right) < 1\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{3}{5}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{1}{5}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP