Câu hỏi:

18/09/2025 5 Lưu

Cho tứ giác \(ABCD\) như hình vẽ dưới đây:

Cho tứ giác ABCD như hình vẽ dưới đây A. Tứ giác ABCD là hình thang có hai đáy là AB,CD (ảnh 1)

A. Tứ giác \(ABCD\) là hình thang có hai đáy là \(AB,\;CD.\)

B. Tứ giác \(ABCD\) là hình thang có hai đáy là \(AD,\;BC.\)         

C. Tứ giác \(ABCD\) là hình thang có hai đáy là \(AC,\;BD.\)       

D. Tứ giác \(ABCD\) không là hình thang.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

\(\widehat D = \widehat {{A_1}},\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\)

Do đó, tứ giác \(ABCD\) là hình thang có hai đáy là \(AB,\;CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

Cho hình thang cân ABCD (AB//CD, AB < CD). Hai đường chéo cắt nhau tại P (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;AC = BD,\;\widehat {ADC} = \widehat {BCD}.\)

Tam giác \(ABD\) và tam giác \(BAC\) có: \(AD = BC,\;AC = BD,\;AB\) chung.

Do đó, \(\Delta ABD = \Delta BAC\;\left( {c - c - c} \right).\) Suy ra, \(\widehat {ABP} = \widehat {BAP}\) nên tam giác \(APB\) cân tại \(P.\)

Suy ra: \(AP = PB.\) Do đó, điểm \(P\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 1 \right).\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {ADC} = \widehat {QAB},\;\widehat {QBA} = \widehat {BCD}\) (các góc đồng vị).

Lại có: \(\widehat {ADC} = \widehat {BCD}\;\left( {cmt} \right)\) nên \(\widehat {QAB} = \widehat {QBA}.\) Do đó, tam giác \(QAB\) cân tại \(Q.\)

Suy ra \(QA = QB.\) Do đó, điểm \(Q\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(PQ\) là đường trung trực của đoạn thẳng \(AB.\)

Suy ra: \(PQ \bot AB\) tại \(I.\) Vậy \(\widehat {QIB} = 90^\circ .\)

Lời giải

a) Sai.

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác).

\[\widehat B + \widehat D = 360^\circ - \widehat A - \widehat C = 360^\circ - 125^\circ - 35^\circ = 200^\circ .\] Vậy \[\widehat B + \widehat D = 200^\circ .\]

b) Sai.

\(\widehat B - \widehat D = 90^\circ \) nên \(\widehat B = \widehat D + 90^\circ .\)

\[\widehat B + \widehat D = 200^\circ \] nên \[\widehat D + 90^\circ + \widehat D = 200^\circ \] suy ra \(2\widehat D = 110^\circ .\) Vậy \(\widehat D = 55^\circ .\)

c) Đúng.

Ta có: \(\widehat B = 55^\circ + 90^\circ = 145^\circ .\)

Cho tứ giác ABCD có góc A = 125 độ, góc B - góc D = 90 độ , góc C = 35 độ (ảnh 1)

Kẻ \(Am\) là tia đối của tia \(AD.\)

Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)

\(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\)

d) Sai.

Vì hình thang \(ABCD\) không có hai góc kề một đáy bằng nhau nên hình thang \(ABCD\) không phải là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP