Câu hỏi:

18/09/2025 17 Lưu

Cho \(\Delta ABC\) cân tại \(A.\) Các đường phân giác \(BD,\;CE\left( {D \in AC,\;E \in AB} \right).\) Biết rằng \(\widehat {ACB} = 55^\circ .\)

          a) \(\Delta ADB = \Delta ACE.\)

          b) \(DE\;{\rm{//}}\;BC.\)

          c) Tứ giác \(BEDC\) là hình thang cân.

          d) \(\widehat {BED} = 115^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC cân tại A. Các đường phân giác BD,CE (D thuộc AC, E thuộc AB. Biết rằng góc ACB = 55 độ (ảnh 1)

a) Sai.

tam giác \(ABC\) cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB},\;AC = AB.\)

\(BD\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}\widehat {ABC}.\)

\(CE\) là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {{C_1}} = \widehat {{C_2}} = \frac{1}{2}\widehat {ACB}.\)

Do đó, \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}\widehat {ACB} = \widehat {{C_1}} = \widehat {{C_2}}\) hay \(\widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}}.\)

Tam giác \(ADB\) và tam giác \(AEC\) có: \(\widehat {{B_1}} = \widehat {{C_1}},\;AB = AC,\;\widehat A\) chung. Nên \(\Delta ADB = \Delta AEC\;\left( {g - c - g} \right).\)

b) Đúng.

\(\Delta ADB = \Delta AEC\;\left( {cmt} \right)\) nên \(AD = AE.\) Do đó, tam giác \(ADE\) cân tại \(A\) nên \(\widehat {ADE} = \widehat {AED}.\)

\(\widehat {ADE} + \widehat {AED} + \widehat A = 180^\circ \) suy ra \(\widehat {AED} + \widehat {AED} + \widehat A = 180^\circ \) nên \(\widehat {AED} = \frac{{180^\circ - \widehat A}}{2}\;\left( 1 \right).\)

\(\Delta ABC\) có: \(\widehat {ABC} + \widehat {ACB} + \widehat A = 180^\circ \) nên \(\widehat {ABC} + \widehat {ABC} + \widehat A = 180^\circ .\)Do đó, \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(\widehat {AED} = \widehat {ABC}.\) Mà hai góc này ở vị trí đồng vị nên \(DE\;{\rm{//}}\;BC.\)

c) Đúng.

Tứ giác \(BEDC\) có: \(DE\;{\rm{//}}\;BC\) nên tứ giác \(BEDC\) là hình thang. Mà \(\widehat {ABC} = \widehat {ACB}\;\left( {cmt} \right)\) nên tứ giác \(BEDC\) là hình thang cân.

d) Sai.

tứ giác \(BEDC\) là hình thang cân nên \(\widehat {EBC} = \widehat {DCB} = 55^\circ .\) Do đó, \(\widehat {AED} = \widehat {EBC} = 55^\circ .\)

Ta có: \(\widehat {BED} = 180^\circ - \widehat {AED} = 180^\circ - 55^\circ = 125^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

Cho hình thang cân ABCD (AB//CD, AB < CD). Hai đường chéo cắt nhau tại P (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;AC = BD,\;\widehat {ADC} = \widehat {BCD}.\)

Tam giác \(ABD\) và tam giác \(BAC\) có: \(AD = BC,\;AC = BD,\;AB\) chung.

Do đó, \(\Delta ABD = \Delta BAC\;\left( {c - c - c} \right).\) Suy ra, \(\widehat {ABP} = \widehat {BAP}\) nên tam giác \(APB\) cân tại \(P.\)

Suy ra: \(AP = PB.\) Do đó, điểm \(P\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 1 \right).\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {ADC} = \widehat {QAB},\;\widehat {QBA} = \widehat {BCD}\) (các góc đồng vị).

Lại có: \(\widehat {ADC} = \widehat {BCD}\;\left( {cmt} \right)\) nên \(\widehat {QAB} = \widehat {QBA}.\) Do đó, tam giác \(QAB\) cân tại \(Q.\)

Suy ra \(QA = QB.\) Do đó, điểm \(Q\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(PQ\) là đường trung trực của đoạn thẳng \(AB.\)

Suy ra: \(PQ \bot AB\) tại \(I.\) Vậy \(\widehat {QIB} = 90^\circ .\)

Lời giải

a) Sai.

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác).

\[\widehat B + \widehat D = 360^\circ - \widehat A - \widehat C = 360^\circ - 125^\circ - 35^\circ = 200^\circ .\] Vậy \[\widehat B + \widehat D = 200^\circ .\]

b) Sai.

\(\widehat B - \widehat D = 90^\circ \) nên \(\widehat B = \widehat D + 90^\circ .\)

\[\widehat B + \widehat D = 200^\circ \] nên \[\widehat D + 90^\circ + \widehat D = 200^\circ \] suy ra \(2\widehat D = 110^\circ .\) Vậy \(\widehat D = 55^\circ .\)

c) Đúng.

Ta có: \(\widehat B = 55^\circ + 90^\circ = 145^\circ .\)

Cho tứ giác ABCD có góc A = 125 độ, góc B - góc D = 90 độ , góc C = 35 độ (ảnh 1)

Kẻ \(Am\) là tia đối của tia \(AD.\)

Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)

\(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\)

d) Sai.

Vì hình thang \(ABCD\) không có hai góc kề một đáy bằng nhau nên hình thang \(ABCD\) không phải là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP