Câu hỏi:

18/09/2025 60 Lưu

Cho hình thang cân \(ABCD\;\left( {AB\;{\rm{//}}\;CD} \right)\)\(AB = 6\;{\rm{cm;}}\;CD = 12\;{\rm{cm}}.\) Kẻ \(AM \bot DC\) tại \(M\)\(BN \bot DC\) tại \(N.\) Độ dài đoạn thẳng \(DN\) bằng bao nhiêu \({\rm{cm}}?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(9\)

Cho hình thang cân ABCD (AB//CD) có AB = 6cm; CD = 12cm. Kẻ AM vuông góc DC tại M (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;\widehat {ADC} = \widehat {BCD}.\)

\(AM \bot DC\) tại \(M\) nên \(\widehat {AMD} = \widehat {AMN} = 90^\circ .\)\(BN \bot DC\) tại \(N\) nên \(\widehat {BNC} = \widehat {BNM} = 90^\circ .\)

Tam giác \(AMD\) và tam giác \(BNC\) có: \(\widehat {AMD} = \widehat {BNC} = 90^\circ ,\;AD = BC,\;\widehat {ADC} = \widehat {BCD}.\)

Do đó, \(\Delta AMD = \Delta BNC\;\left( {ch - gn} \right).\) Do đó, \(AM = BN,\;DM = NC.\)

\(AM\,{\rm{//}}\,BN\) (cùng vuông góc với \(DC\))  nên \(\widehat {MAN} = \widehat {BNA}\) (hai góc so le trong).

Tam giác \(AMN\) và tam giác \(NBA\) có: \(AM = BN,\;\widehat {MAN} = \widehat {BNA}\;\left( {cmt} \right),\;AN\) chung.

Do đó, \(\Delta AMN = \Delta NBA\;\left( {c - g - c} \right).\) Do đó, \(AB = MN = 6\;{\rm{cm}}{\rm{.}}\)

Ta có: \(DM + MN + NC = 2DM + MN = CD.\)

Do đó, \(2DM + 6 = 12\) nên \(DM = 3\;{\rm{cm}}{\rm{.}}\) Suy ra: \(DN = DM + MN = 3 + 6 = 9\;\left( {{\rm{cm}}} \right).\) Vậy \(DM = 9\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hình thang có hai đường chéo bằng nhau là hình thang cân.       

B. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.      

C. Hình thang có hai cạnh bên bằng nhau là hình thang cân.         

D. Hình thang cân có hai cạnh bên bằng nhau.

Lời giải

Đáp án đúng là: C

Câu sai là: Hình thang có hai cạnh bên bằng nhau là hình thang cân.

Lời giải

Đáp án: \(60\)

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat A = \widehat B,\;\widehat C = \widehat D.\)

Lại có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)

\(\widehat A + \widehat A + \widehat C + \widehat C = 360^\circ \)

\(2\left( {\widehat A + \widehat C} \right) = 360^\circ \)

\(\widehat A + \widehat C = 180^\circ .\)

\(\widehat A = 2\widehat C\) nên \(\widehat C + 2\widehat C = 180^\circ .\) Vậy \(\widehat C = 60^\circ .\)

Câu 6

A. Hai đường chéo vuông góc với nhau.                    

B. Hai đường chéo cắt nhau tại trung điểm mỗi đường.         

C. Hai đường chéo bằng nhau.                  

D. Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\widehat B = 50^\circ .\)                                     

B. \(\widehat B = 60^\circ .\)                          
C. \(\widehat B = 70^\circ .\)          
D. \(\widehat B = 80^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP