Câu hỏi:

18/09/2025 16 Lưu

Cho hình thang cân \(ABCD\;\left( {AB\;{\rm{//}}\;CD} \right)\)\(AB = 6\;{\rm{cm;}}\;CD = 12\;{\rm{cm}}.\) Kẻ \(AM \bot DC\) tại \(M\)\(BN \bot DC\) tại \(N.\) Độ dài đoạn thẳng \(DN\) bằng bao nhiêu \({\rm{cm}}?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(9\)

Cho hình thang cân ABCD (AB//CD) có AB = 6cm; CD = 12cm. Kẻ AM vuông góc DC tại M (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;\widehat {ADC} = \widehat {BCD}.\)

\(AM \bot DC\) tại \(M\) nên \(\widehat {AMD} = \widehat {AMN} = 90^\circ .\)\(BN \bot DC\) tại \(N\) nên \(\widehat {BNC} = \widehat {BNM} = 90^\circ .\)

Tam giác \(AMD\) và tam giác \(BNC\) có: \(\widehat {AMD} = \widehat {BNC} = 90^\circ ,\;AD = BC,\;\widehat {ADC} = \widehat {BCD}.\)

Do đó, \(\Delta AMD = \Delta BNC\;\left( {ch - gn} \right).\) Do đó, \(AM = BN,\;DM = NC.\)

\(AM\,{\rm{//}}\,BN\) (cùng vuông góc với \(DC\))  nên \(\widehat {MAN} = \widehat {BNA}\) (hai góc so le trong).

Tam giác \(AMN\) và tam giác \(NBA\) có: \(AM = BN,\;\widehat {MAN} = \widehat {BNA}\;\left( {cmt} \right),\;AN\) chung.

Do đó, \(\Delta AMN = \Delta NBA\;\left( {c - g - c} \right).\) Do đó, \(AB = MN = 6\;{\rm{cm}}{\rm{.}}\)

Ta có: \(DM + MN + NC = 2DM + MN = CD.\)

Do đó, \(2DM + 6 = 12\) nên \(DM = 3\;{\rm{cm}}{\rm{.}}\) Suy ra: \(DN = DM + MN = 3 + 6 = 9\;\left( {{\rm{cm}}} \right).\) Vậy \(DM = 9\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

Cho hình thang cân ABCD (AB//CD, AB < CD). Hai đường chéo cắt nhau tại P (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;AC = BD,\;\widehat {ADC} = \widehat {BCD}.\)

Tam giác \(ABD\) và tam giác \(BAC\) có: \(AD = BC,\;AC = BD,\;AB\) chung.

Do đó, \(\Delta ABD = \Delta BAC\;\left( {c - c - c} \right).\) Suy ra, \(\widehat {ABP} = \widehat {BAP}\) nên tam giác \(APB\) cân tại \(P.\)

Suy ra: \(AP = PB.\) Do đó, điểm \(P\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 1 \right).\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {ADC} = \widehat {QAB},\;\widehat {QBA} = \widehat {BCD}\) (các góc đồng vị).

Lại có: \(\widehat {ADC} = \widehat {BCD}\;\left( {cmt} \right)\) nên \(\widehat {QAB} = \widehat {QBA}.\) Do đó, tam giác \(QAB\) cân tại \(Q.\)

Suy ra \(QA = QB.\) Do đó, điểm \(Q\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(PQ\) là đường trung trực của đoạn thẳng \(AB.\)

Suy ra: \(PQ \bot AB\) tại \(I.\) Vậy \(\widehat {QIB} = 90^\circ .\)

Lời giải

a) Sai.

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác).

\[\widehat B + \widehat D = 360^\circ - \widehat A - \widehat C = 360^\circ - 125^\circ - 35^\circ = 200^\circ .\] Vậy \[\widehat B + \widehat D = 200^\circ .\]

b) Sai.

\(\widehat B - \widehat D = 90^\circ \) nên \(\widehat B = \widehat D + 90^\circ .\)

\[\widehat B + \widehat D = 200^\circ \] nên \[\widehat D + 90^\circ + \widehat D = 200^\circ \] suy ra \(2\widehat D = 110^\circ .\) Vậy \(\widehat D = 55^\circ .\)

c) Đúng.

Ta có: \(\widehat B = 55^\circ + 90^\circ = 145^\circ .\)

Cho tứ giác ABCD có góc A = 125 độ, góc B - góc D = 90 độ , góc C = 35 độ (ảnh 1)

Kẻ \(Am\) là tia đối của tia \(AD.\)

Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)

\(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\)

d) Sai.

Vì hình thang \(ABCD\) không có hai góc kề một đáy bằng nhau nên hình thang \(ABCD\) không phải là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP